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ABSTRACT

" Time series models with autoregressive, moving average and mixed

autoregressive-moving average correlation structure and with symmetric,

heavy-tailed, non-normal marginal distributions, called L-Laplace, are

considered.

First, a flexible mixed model NLARMA(p,q) with Laplace (double

exponential) marginals is investigated. The correlation structure for

several special cases is derived. The innovation sequence for the

second-order autoregressive case, NLAR(2), is derived. Parameter

estimation in the NLAR(1) models is discussed in terms of moments, least

squares and maximum likelihood.

Second, a family of continuous random coefficient models with

L-Laplace distributions are examined. The X-Laplace distribution i-

described along with a useful transformation. The correlation structure

"-'" for special cases is derived. For a special case when Z is one, the

*.' BELAR(1) model with Laplace marginals, the maximum likelihood estimator

of serial correlation is derived. Least squares estimates are also

derived using the concept of a linear residual. These estimators of

correlation, along with other estimators of location and scale are

compared in a small simulation study.

. Thirdly, the NLAR(1) and the BELAR(1) processes are compared using

higher order residual analyses based on the uncorrelated, but dependent

linear residuals, tRn .<

Finally, open problems, as well as possible extensions and

applications of the analyses given in this thesis are discussed.
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I. INTRODUCTION

In standard time series analysis, one assumes the marginal

distributions of X n I are Normal, i.e. Gaussian. However, a Gaussian

distribution will not always be appropriate. In earlier works by Gaver

and Lewis [Ref. 1]; Jacobs and Lewis [Refs. 2,3]; and Lawrance and Lewis

[Refs. 4,5,6], stationary non-Gaussian time series models were developed

for variables with positive and highly skewed marginal distributions.

There still remain other situations for which Gaussian marginals are

inappropriate, i.e. the marginal time series variable being modelled,

although not skewed or inherently positive valued, has a large kurtosis

or long-tailed distribution. The position errors in a large navigation

system have such a distribution. In particular, Hsu [Ref. 7] modelled

pooled position errors using the double exponential distribution (also

called the Laplace distribution). Also McGill [Ref. 8] showed that the

Laplace distribution provides a characterization of the error in a

4 iming device under periodic excitation. Speech-waves are modelled

. using Laplace variables (Davenport [Ref. 9]). In the "speech-like"

process given by the linear AR(1) model

X - cX + (I - c2)I/ 2 En, (1.I)
n n-1 n

where .8 < c < .9, the innovation sequence iE I is i.i.d. Laplace (Linde
n

and Gray [Ref. 101). In image coding systems using a two-dimensional
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discrete cosine, DC, transform, Reininger and Gibson [Ref. 11] showed

that the Laplace distribution gives the best approximation to the

distribution of the non-DC coefficienits. Recently Sethia and Anderson

[Ref. 12] required a stationary autoregressive process with Laplace

marginals in their research in communications technology.

Even before Gaver and Lewis [Ref. 1] wrote the pioneering paper on

the subject of autoregressive processes with a specified non-Normal

- marginal distribution, Gastwirth and Wolff [Ref.13] had derived a

solution to the linear additive first-order difference equation

X n= +n- E, (1.2)

for which X n I is marginally Laplace. This result was used later by

Gastwirth and Rubin [Ref.14] within the context of robust estimation on

dependent data. This solution to (1.2) is here called the Laplace

First-order Autoregressive Process (LAR(1)). The early solution of

(1.2) is mentioned at this point, merely to further substantiate the

claim that non-Normal, heavy-tailed distributions are of interest.

In this thesis, several time series models with a specified

symmetric, heavy-tailed marginal distribution are presented. This

distribution, called the L-Laplace distribution, includes the Laplace

distribution as a special case. The approach in Chapter II extends the

discrete random coefficient model of Lawrance and Lewis [Ref. 6], New

Exponential Autoregressive Moving Average--NEARMA(p,q), to the case

where the marginal distribution is Laplace, also called double
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Exponential. This class of models is called The New Laplace

Autoregressive Moving Average model, NLARMA(p,q). Several special cases

of NLARMA(p,q) are individually researched. The second-order

autoregressive model, NLAR(2), is established by showing the conditions

for existence and uniqueness and by specifying the innovation structure.

The correlation structure of NLAR(2) is also given along with results

concerning directional moments and partial time reversibility.

For the case when p = 1 and q = 0, called NLAR(1), the distribution

of the difference X n-X is derived, providing some insight into the

nature of the differenced NLAR(1) model. The conditional density of Xn

given Xn- is also derived, which leads to a brief investigation of the

likelihood function. Parameter estimation in NLAR(1), however, is

limited to comparisons of the moment estimators and the least squares

estimators for the independent model parameters of serial correlation.

The correlation structure is derived for other models in the

NLARMA(p,q) family: the first-order moving average called NLMA(1); the

first-order mixed model called NLARMA(1,1); and the special cases of

p th -order autoregressive models called TLAR(p) that are analogous to the

TEAR(p) model of Lawrance and Lewis [Ref. 6]. These models demonstrate

the flexibility of the NLARMA(p,q) family.

In Chapter III, a family of stationary time series is developed

.- using continuous random coefficients in the additive difference equation

model. The marginal distribution is specified to be a member of the so-

AF* called 2-Laplace distributions, the properties of which are described at

22



the beginning of the chapter. The "square-root Beta-Laplace" transform

is defined. It is used to formulate the %-Laplace time series models.

For the special case when Z = 1, the marginal distribution is again

Laplace. The autoregressive model is called the Beta-Laplace First-

Order Autoregressive model, BELAR(1). The conditional density of Xn

given Xn- is derived. This leads to the derivation of a likelihood

function and a numerical technique to evaluate and maximize the

likelihood function with respect to the model parameter for serial

correlation.

Several facets of the parameter estimation problem are investigated

* for BELAR(1). The behavior of different estimators of scale and

location are compared using the Simulation Testbed (SIMTBED) of Lewis,

Orav and Uribe [Ref. 15]. The least squares estimation theory is

derived around the concept of a linearized residual. Asymptotic

properties are derived using results from Nicholls and Quinn [Ref. 16].

Robust estimators are defined and simulated in SIMTBED. Finally, a

numerical scheme for finding the maximum likelihood estimator of serial

correlation is used in a small simulation study of the small sample

properties of the maximum likelihood estimator.

In the last section of Chapter III, a first-order moving average

model is discussed. A q th-order moving average model in Z-Laplace

variables is also derived.

The random coefficient approaches are not the only ways to generate

Laplace or other variables with a specified correlation structure. The

* literature contains numerous articles on generation of random sequences.
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One approach put forth in several papers (Gujar and Kavanagh [Ref. 17];

Haddad and Valisalo [Ref. 18]; Li and Hammond [Ref. 19]; Liu and Munson

[Ref. 20]; Sondhi [Ref. 21]) involves passing white Gaussian noise

through a linear filter followed by a zero memory nonlinear transform.

This is a general procedure that produces exactly the required marginal

distribution and a good approximation to the autocorrelation structure.

However, the scheme lacks the simplicity of either of the methods being

proposed. Moreover, the filtering approach produces, for example, in

the first-order autoregressive case, only one process.

It is important to note that in non-Normal time series, there are

infinitely many processes with a given marginal and altocorrelation

structure. This is the case, for example, in the two-parameter NLAR(1)

process. The differences in these processes must be explored through

higher joint moments. In Chapter IV, residual analyses using fourth

joint moments are derived. The ideas are modifications of those from

Lawrance and Lewis [Refs. 6, 22], who accomplished an analysis using

joint third moments within the NEAR framework. The residual analysis is

applied to show the differences in the various NLAR(1) processes and the

BELAR(1) process.

In Chapter V, open problems and possible extensions of the analyses

given in this thesis are discussed. Possible applications to the

analysis of wind velocity data are detailed.

24
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II. DISCRETE RANDOM COEFFICIENT MODELS WITH LAPLACE MARGINALS

A. INTRODUCTION

Two aspects of modelling with dependent random variables are widely

studied--the marginal distribution and the correlation structure. It is

widely known how to generate sequences with either a specified marginal

distribution or a particular correlation structure. Transforming the

random variables may have an undesirable and unknown effect on the

correlation structure. Likewise, the marginal distribution of a

filtered process may be unknown.

It is the generation of random variables with both a specified

marginal and a specified correlation structure that is discussed in this

. chapter. Specifically, we want sequences with a Laplace (double

Exponential) marginal distribution and with ARMA(p,q) correlation

structures as given by Box and Jenkins [Ref. 231 for the usual linear

ARMA(p,q) models.

The following is an example of a process that has Laplace marginals.

SLet (X n } be a binary Markov chain with transition matrix P, so that

P [X n O IX n -=0 ]  = c 1 ' P[X n 1 Xn -1=0 ]  - i-ct ' P[Xn I Xn -1 -1 = c 2, and

X

PX n=OX 1] 1- 2 Let L n= (-1 ) nE ,- where {En I is an i.i.d.n X n--Oi_  I- 2. Le n n-I En

. Exponential sequence. If aU = 2a, [L n  has a Laplace marginal1 2 n

distribution. However, the correlation structure is not that of an

AR( ) process. It is, in fact, easy to see that Corr(L Ln) =
no n-k
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(1/2)(2a-1) k , for k=+I,+2,..., which is not a pure geometric function

of k.

Two processes which produce an AR(1) correlation structure and a

Laplace marginal distribution are the Laplace Discrete AR(1), LDAR(1),

which is an adaption of the DAR(T) process of Jacobs and Lewis [Ref. 2],

and the linear process of Gastwirth and Wolff [Ref. 13], called the

LAR(1) process. The LDAR(1) model produces an {X I sequence using the
n

first-order autoregressive equation with random coefficients

Xn ; VnXn 1 + (1-Vn )L, (II.A. 1)

where {V is an i.i.d, sequence of Bernoulli random variables with
n

* P Vn = -P{V n--O = p; (L I is an i.i.d. sequence of Laplace random
nn n

variables. The coefficient and innovation processes from time n are

assumed to be independent of Xn_1 ,Xn -2 . . . .. . This sequence produces runs

of constant value when successive realizations for V produces the value
n

1. When V nis zero, a new value is selected. Although LDAR(1) is of

limited value in general application because of this runs property, it

is significant in that it is one of the first in a series of more

general discrete random coefficient equation models for non-Normal time

series, and it produces a first-order autoregressive Markovian process

for any specified marginal distribution.

WThe LAR(1) model turns out to be a special case of the more general

process called the New Laplace Autoregressive Moving Average model,

NLARMA(p,q). Properties of the LAR(1) process are pointed out in the
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.;.-*.-.N- .-.
"'n"" 

' r "
"7_-!......"."......"................... " ".... " . . ......



next section of this chapter, which gives a characterization of the

Laplace distribution.

The NLARMA(p,q) model is a very useful family of time series models

that are discrete random coefficient linear difference equations. The

models are extensions of the NEARMA(p,q) structure of Lawrance and Lewis

[Refs. 4,5,6] to those cases where the underlying marginal distribution

is Laplace rather than Exponential. The family provides great

flexibility to systems modelling, because of the broad range of

correlations and different dependency structures which are obtainable.

Section C is an examination of the second-order autoregressive model

of the family, NLAR(2), for p = 2 and q = 0 in NLARMA(p,q). Conditions

for the existence and uniqueness of the strictly stationary NLAR(2)

model are derived using results from Nicholls and Quinn [Ref. 16] about

Random Coefficient Autoregressive models of order k, RCA(k). In a

proof, very similar to that given by Lawrance and Lewis for the NEAR(2)

model [Ref. 6], the innovation for the NLAR(2) model is derived

explicitly. The innovation is shown to be a convex combination of

scaled Laplace variables. The correlation structure in the NLAR(2)

model is shown to satisfy the Yule-Walker type equations just as do the

linear AR(2) models. Aspects of directionality and time reversibility

are also addressed.

In Section D, the first-order autoregressive model, NLAR(1), is

described. It is a two-parameter, first-order Markov process which is a

special case of the NLAR(2) model. The distribution of differences is

derived. The conditional density of Xn given Xn- and the likelihood
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function are also derived. The non-differentiability of the likelihood

function for all values of the two parameters has prevented the

development of the maximum likelihood estimators. Parameter estimation

is discussed within the context of moment estimators and least squares,

using the usual linearized residual.

In Section E, several different special cases of NLARMA(p,q) are

formulated and briefly discussed. The correlation structure for a

first-order moving average model, NLMA(1), and a mixed autoregressive

moving average model, NLARMA(1,1) are given. Correlation structure is

'- th
* derived and parameter estimation is discussed for the general p -order

autoregressive models, TLAR(p), which are special cases of the NLAR(p).

Each of these models in Section E could well be the basis for

further research. The intent at this point is primarily to further

substantiate the claim of wide versatility and tractability in modelling

non-Normal time series within the context of the NLARMA(p,q) family.

For example, the bivariate AR(M) process with Exponential marginal

distributions of Dewald and Lewis [Ref. 24], can be extended to the case

where the marginal distribution is Laplace. This, however, is not

discussed further in this thesis.

B. CHARACTERIZATION OF THE LAPLACE DISTRIBUTION

1. Properties of the Laplace Distribution

The Laplace distribution is also known as the double Exponential

distribution. In general, the density of a Laplace distributed

variable, L, has two parameters--a location parameter - < < a , nd a
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scale parameter X > 0. The parameter i is fixed here at zero. For

-, < x < - we have

f (x; X) - exp(-
L2A x/)

In what follows we will define L n } as a sequence of i.i.d.

random variables of the Laplace distribution with A - 1 (Standard

Laplace). The characteristic function of the standard Laplace variable

is

(W )  - < W < , (II.B.1.2)

and we have

O nif n is odd,
.E(Ln) = (II.B. 1.3)

n! if n is even,

so that E(L) - 0, Var(L) = 2, skewness is zero, and kurtosis is 3. The

value of the kurtosis indicates that the symmetric Laplace distribution

has heavier tails than the normal distribution, for which the kurtosis

is 0.

The sum of n > 2 i.i.d. standard Laplace variables can be

written as the difference of two i.i.d. random variables Y. Y2 with

Gamma distribution, shape parameter k = n and scale parameter X - 1.

29
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This follows immediately from the characteristic function. Let

n
Y = i L.; then

-Y(W) = + .= I + i iw = iB..4)+ W i 1 2W

This result is quickly generalized. Replacing n by t > 0, we see that

eL (W)] t is the characteristic function for the variable X = Y1 - Y2

where Y. - Gamma(t,1), i = 1,2 and Y and Y2 are independent. This

demonstrates that the Laplace distribution is infinitely divisible.

Another useful result is obtained from (II.B.1.4) when n = 1.

It shows that a Laplace variable is the difference of two i.i.d.

exponentipl (A = 1) variables. This makes it quite simple to generate

Laplace distributed variates in computer simulations.

Random variables with a standard Laplace distribution are self-

.- L decomposable. Let

i(W) - ¢L(M)/4L(PW), 0 < p < 1. (II.B.1.5)

According to Feller [Ref. 25: p. 588], if 0 (M) is the transform of a
E

random variable for each 0 p < 1, then L is said to be self-

decomposable. But for -w< w <

' (W) = + (pW) 2 }(1 + 2 )-1

= + (1 - P)(1 - iW) }p + (1 - p)( + it) 1 } (II.B.1.6)
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P= 2  (1 - p2 )(1 + W2 ) • (II.B. 1.7)

We recogni ze (II B. I].6) as the product of the characteristic functions

of two i.i.d. innovation variables, E and -E2' as described in the

EAR(1) process in [Ref. 1]. Also from (II.B.1.7)

0 w.p. p2,

E=
2 . (II.B.1.8)

L w.p. I - p 2.

2. The Laplace First-Order Autoregressive Process, LAR(1)

The i.i.d. sequence ( I with distribution given in (II.B.1.8)

is the innovation process of a first-order linear autoregressive

equation

X PXn-1 + E n' (II.B.2.1)

where {X n is a stationary time series with double exponential marginal

distribution, Ip1<1. This is the LAR(1) model. It is actually a

rediscovery in light of the fact that Gastwirth and Wolff [Ref. 13] had

derived it earlier; also, Gastwirth and Rubin [Ref. 14] discuss it

within the context of robust estimation techniques. The present account

of LAR(1) includes new results.

The LAR(1) model has the same properties as the EAR(1) model in

[Ref. 1] with two important differences. First, if -1 < p < 0, negative

serial correlations for odd lags are obtained. Secondly, it is
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partially time reversible in the sense that for all % and n, both of the

following are true:

E(X2X )=E(X X2  ) , (IIB.0
n n+9. n n+i (IB .2

P(X n  x ) = P(X < X ) - 1/2. (II.B.2.3)

These results are derived in Section II.C and Section II.D. Note,

however, that since LAR(1) is a linear AR(1) model with non-Gaussian

innovation n 1, it is not fully time reversible (Weiss [Ref. 26]).

Also, note that this LAR(1) model has the zero defect property; when

E n = 0, then Xn/Xn- 1 p and p can be determined exactly in long enough

runs of the series {X }. This property is generally undesirable, but
n

the broader NLAR(2) model developed in the next section is free of this

defect, except for the special parameter values for which it reduces to

*, - the LAR(1) model.

- °If no repeats are observed in a realization of the time series,

an extremely efficient estimator of p for LAR(1) is the median of the

ratio X /X_. The simulation results given in Table II.B.2.1

substantiate this claim. In Section II.D.4 and again in III.E.5, using

the framework of the Simulation Testbed (SIMTBED) [Ref. 15], we will see

that this median ratio is for small samples very biased, and is,

apparently, asymptotically biased in all of the random coefficient AR(1)

models with a Laplace marginal distribution that we examine.
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TABLE II.B.2.1

Simulation Results using Median [Xi/X i_ } to Estimate

p in the LAR(1) Process for Samples of Size 2000

True p = med {X i/X._I Comments

-.9 -.9 -.9 occurred 1586 times
in 1999 ratios

- .2 - .2 - .2 occurred 75 times
in 1999 ratios

* -.1 -.03746 -.1 occurred 11 times
in 1999 ratios

+.01 +.01986 +.01 never occurred in

1999 ratios

+.5 +.5 +.5 occurred 490 times
in 1999 ratios

+.75 +.75 +.75 occurred 1149

times in 1999 ratios

C. A SECOND ORDER AUTOREGRESSIVE LAPLACE TIME SERIES MODEL, NLAR(2)

1. Introduction

Using the terminology from [Ref. 61 the following time series

model called NLAR(2), New Laplace Second-order Autoregressive model is

proposed. This is a special case of NLARMA(p,q) model with p = 2,

q = 0. The NLAR(2) model has four parameters, double exponential

marginal distribution for {X }, second-order autoregressive Markov
n

dependence, and autocorrelations satisfying Yule-Walker type equations.
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The stationary NLAR(2) model has the same form as the stationary

NEAR(2) model in [Ref. 6]. Writing the time series [X } in the form of
n

an additive, linear, random coefficient autoregressive difference

equation, we have for all n that

X * K' X " + (II.C IX)
n 1 n n 2 n n-2 n'

where {K', K"} is a sequence of i.i.d. discrete bivariate random
n n

variables with distribution

(1,0) w.p. Ol,

(K' , K"} = (0,1) w.p. L2' n 0 0, 1 1, ± 2,n -
, (0,0) w.p. 1- al -a 2 , (II.C.1.2)

E. n is an i.i.d. innovation sequence whose distribution is given in

(II.C.2.4); and {n I and IK' K") are mutually independent and
n n n

independent of Xn_,Xn_2 . . . .  The parameter space is defined by

0 : 1 1 and 0 <  ai <  1, i = 1,2; a, + a2 1 1. Graphs of the

admissible regions in the parameter space and the correlation space are

presented in Section II.C.3.

Equations (I.C.1.1) and (II.C.1.2) have a direct physical

interpretation. The observed process at time n, X n is only one of

three possibilities: i) X is some multiple of what it was at time n-1,
n

BIXnI, plus some random noise n; ii) Xn is some multiple (possibly

different than B1 ), of its value at time n-2, B2 Xn_ 2 , plus some
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independent random noise; iii) X is just random noise, en, independent
nn

of everything up to time n.

2. Existence and Uniqueness

The work of Nicholls and Quinn [Ref. 16] on random coefficient

autoregressive models is relevant to the NLAR(2) process. They have

given the necessary and sufficient conditions for the existence of the

unique covariance stationary solution to the following class of

univariate random coefficient autoregressive models of order p, RCA(p):

p
Z n {yi + B n(i)IZ.n-i + En' (II.C.2.1)

n = 0, ± 1, ± 2, ... , where

a. the Y.'s a-e real constants;1

b. B n I is a p-vector, second-order stationary, independent process

with E(B ) = 0 and constant covariance matrix;

c. E n I is a scalar, second-order stationary, independent process,

independent of {B 1, with E(E2 ) = 
a
2 for all n.

-n n

They also have shown that if {Bn I and c n } are i.i.d. processes,

then the solution [Z is strictly stationary and ergodic.
n

Let Y. - aiB for i = 1,2 and Bn(1) = 8(Kn - I ) and B (2) -
I ii n 1n 1n

82 ( K  -cI 2 ) Then (II.C.1.1) and (II.C.2.1) have the same form. That

is (II.C.1.1) is an RCA(2) model if the innovation of NLAR(2) satisfies

condition (iii) above. Thus applying the results in [Ref. 16: p.31 and

p.37], there exists a unique strictly stationary and ergodic solution to

(II.C.2.1) for Y. and B (i) as defined above, if and only if all of the

35

-



roots of the characteristic equation

(t 2 - a182t - c288)(t
2 - B28 ) 0, (II.C .2.2)

1 1 2 2 2

are within the unit circle, i.e. iff a 81 + ( a2 < 1. This is satisfied

1 1 2 2

for the conditions on the parameters defining NLAR(2), thus establishing

the existence of the model (II.C.1.1).

No marginal distribution is ascribed to solutions of the general

RCA(p) models in [Ref. 16]. It is, in fact, determined by the

independent choices of the innovation and the random coefficients.

However, by specifying the marginal distribution and the random

coefficients, in NLAR(2) the innovation is restricted more than in the

RCA(p) model. If the X in (II.C.1.1) or Z in (II.C.2.1) have a
n n

standard Laplace marginal distribution, then all their moments are given

by (II.B. .3). From (IT.C.1.1) or (II.C.2.1), it follows that for all

p = 1,2....

k 2k 22k
E(2k- {(2k)} [I - (a181 + 8

""k-1 (II.C.2.2)2(k-i) + 2(k-i) 2(k-i)
1(a11 2(O- ) B )E(E )/{(2i)I] > 0," ~i=1

.nd for this to be true it is necessary that

a 2k + a 2k . (II.C.2.3)
c181  c 2 2  (1
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Since a and a are probabilities it is necessary that IBil 1 1 for

i - 1,2 for (II.C.2.3) to hold. If not, there exists for every a > 0

and a > 0 an integer m, such that cL a 2m or a2 m is greater than 1.
2 1 1 22

We have now established the necessary conditions on the

innovation {en } , and on B.1 and 82 --namely that Jail 1, i = 1,2--for

the existence of a unique strictly stationary solution to (II.C.2.1)

with a marginal Laplace distribution and with the random coefficients

given by (II.C.1.2). In the next theorem, we show that I Bi for

i = 1,2 is also a sufficient condition and that such an innovation

random variable E exists. We also give its explicit form--a convex

combination of Laplace random variables. For simplicity, the parameter

space is regarded as being described by strict inequalities for

THEOREM 1. Let [X I be a stationary process with standard Laplace
n

marginal distribution. For all n, let equations (II.C.1.1) and

(II.C.1.2) hold with 0 < < 1, 0 < a. < 1 for i = 1,2 and

11 + a 2 < 1. Then

L w.p. 1-p 2 -P 3 ,Ln

E Kn L = Ib2ILn w.p. P20 (II.C.2.4)

lIb3ILn w.p. P3'

where (L } are i.i.d. standard Laplace variates; the K 's have values in
n n

I, Ib2I, 1b31} and are independent of {Ln and Kn, Kn for all n.

They are also independent of X n_,Xn_2 . Furthermore,
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pa 2 + 2 2 2) (1 2)

Ha )2 - a +Ct )2 1/(b b b (II.C.2.5)"-"P2 1 ( 2 212b1 2 1 2 }  2 3

p3  + a 2 a2 (a a2 + a 2 )b~1/(b 2 b2)(1 - b), (II.C.2.6)

1 2 1 2 12/2

1 > b2  s + (s - 4r) } > b3 = 2 {s - (s' - 4r) I/ 2  > 0, (II.r.2.7)
2 2 3 2

.s = ( - a 1 I  - 2a2 and

r= (1 a - a2 )a2B2 (II.C.2.9)(1 - c 1  - 2 ) 6 1 2 .

Proof:

For the NLAR(2) model specified by (II.C.1.1), (II.C.1.2) and

['-" (II.C.2.4) - (II.C.2.9), let X(w) and ¢ (w) be the characteristic

functions of the {X n  and tn I sequences. If {X n is stationary, then

-X(W) = W(){a1iX(%1) + O2tX(B 2 W) + (1-a1-a2)}. (II.C.2.10)

Assuming a standard Laplace marginal distribution for [X n, the

independent distribution of E has a characteristic function, possibly
n

improper, given by

1 2
w%~ +W (w 2)[(-a -CL a~2 B2 4 + )(Ba12 + (1-a B82 JW2 +1

1 212 11 2 2

(11.C.2.11)
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It is convenient to factor the quadratic in w2 in the

denominator of (II.C.2.11). The roots of this factor are both real and

distinct. To see this, note that

((0-a )2 + (1_a )8212 - 4(1- -a a2
11 22 121 2

={(lal) 1 _ (1_a2(-}a + 4 a 2 1B 2  > o.
1~ ~ 1 '~ 2 1 '12 1 2

The roots are also both negative, which can be seen by noting that the

product r 1r = I/(1-a a )B28 is positive, but the sum r + r
c 2  1 ( 1 2 1 2

-(1-a 2 + (a) a2 _/(1-a ta2 a
2 is negative.

2 22 1 2 12

Letting r1 =-1/b2 and r = -1/b , we can rewrite (II.C.2.11)

using partial fraction decomposition to obtain

"1 r 1 1_ _

(P rE (W) = (1-P 2-P 3 ) l-- ) + P 2(1+b, 2) + P 3(1+b, 2 ) .  (II.C.2.12)
E2 3

From (II.C.2.11)

b2 + b2 = (1-a )B? + (i-a2 B2 s (II.C.2.13)
2 3 1 1 2 2

and

b 2b 2  = (1 -ala 2B2 r. (II.C.2.14)
3 2 1 2 12

Comparing (II.C.2.12) and (II.C.2.11) term for term also yields

p 2 (1-b2) + p (1-b') = a 82 a2 (II.C.2.15)
2 2 3 3 1 1 282

and
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p-: -b 2)b2 + p 3 (1-b')b' (a ) .2 (II.C.2.16)

Expressions for b7, b, p2 and p are obtained in terms of al.

a2, a and 82, by solving (II.C.2.13) - (II.C.2.16). From solving

(II.C.2.15) and (II.C.2.16) simultaneously, we obtain (II.C.2.5) and

(11.0.2.6). Equations for b2 and b2 given in (IIC.2.7) are obtained

from solving (II.C.2.13) and (II.C.2.14) simultaneously. Arbitrarily,

let b2 be the larger value.2

It remains now to show that the inversion of (II.C.2.12) will,

in fact, yield a function that is a probability density and is the

mixture of densities for scaled Laplace variables. To do this, we show

that p2 and p3 can be interpreted as probabilities and that p2 + p 3 
< 1.

To establish that p2 + p 3 
< 1, we have, after adding (II.C.2.5)

and (II.C.2.6)

(a1 B 
2 +aa 2  (a1 +a2 )B2 a2)

S = 1 2 1 2(..2.7)
"-. P2 P3 -(1-b 2 ) (1-b2 ) "

2 3

Multiplying out (1-b2 )(1-b 2 ) and using (II.C.2.13) and (II.C.2.14), we
2 3

have, after some rearrangement

-- 1 2) . (II.C.2.18)
( B2 (I-B ) + al B 2 ( I - B

2
)  + a 2 (1-B2

1 2 + 1 -2 22 1

This expression is clearly positive and less than one, from

which it follows that p2 +P<l.
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To show that p2 and p3 are probabilities, it remains to show

that they are both positive. To do this, it is shown that the

numerators and the denominators of (II.C.2.5) and (II.C.2.6) are

positive. For the denominators, this requires that O<b 2 , b2 1, which

is shown by noting O<(1-b 2 )(1-b 2 )<1. From (II.C.2.17) and (II.C.2.18),
2 3

it follows that

.4

2 (1-b2 )(1b) = ( 1- 8)(a-2 ) 1B + i 2 + 2 21B2  > 0
2 3 1 2 1 1 1 2 2 1

Also,

(1-b2)3(1-b) = (b + b2 ) - b 2 b 2

= (1a a~2 + -C 21 L- 2a
1 1 (I 2)82  (1-2 12

$= (( I) ( -B2) + (1-a 2) (1_a2) + B22 > O.

Therefore, b 2 and b
2 are less than one, so p2 and p3 have

positive denominators.

To see that p2 and p3 have positive numerators, note that it

must be true that

b21 2 2 2
2  < b = aa a2) < b 2  (II.C.2.19)

13 ( 12  2
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Using (II.C.2.8) and (II.C.2.9), (II.C.2.19) is equivalent to

1/2 1/..4l2 ,
-(s2 -4r) < 2b - < ( -4r)

or

82 - 4r > (s-2b) 2 ,

or

sb - b2 - r > 0. (II.C.2.20)

But the lefthand side of (II.C.2.20) is

c a 2 8 8 B ) 2

(aI B+a 2 82) 2
112. 2

which is strictly positive.

Therefore, p2 and p3 are both positive and p2 +P3 <1. Therefore,

P2, p3 and 1-p2-p3 can be regarded as probabilities. Therefore n has a

proper density which can be generated as the mixture of three Laplaces

with scale parameters 1, lb2 1 and b31, respectively. Q.E.D.

The general NLAR(2) model uses the four parameters to achieve a

wide range of sample path behavior. Figure II.C.2.1 illustrates four

different realizations of the NLAR(2) process. In each case, the

theoretical autocorrelations are identical with p(l) = 0.64 and

p(2) = 0.5. Also, note that each sample path was generated from the

same i.i.d. standard Laplace sequence [L n , such that (X1 ,X2) (L1 ,L2 .

Since this is not the steady state bivariate distribution of (XnXnI),

the sample paths illustrated in Figure II.C.2.1 are displayed beginning
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with X to avoid the initial transient behavior of the process. The

501

true value of each parameter is displayed above the corresponding sample

path. Figure II.C.2.2 contains the scatter plots for each sample in

Figure II.C.2.1. The sample size in each plot is 2000.

Many special cases of the NLAR(2) model could be mentioned. The

following have one or more of the parameters at their boundary value and

* have valid but less complicated results for the distribution of {e } in
n

(II.C.2.4). If a1  a 2 = 0, then {n I is the i.i.d. sequence (L n I and

X - C . If a, . 1 then En I is the innovation of the LAR(1) model-n n

derived from (II.B.1.7) and (II.B.1.8). If JB11 = IB21 = 1 and

a 1 + a2 < 1 then each cn is distributed as a scaled Laplace random

variable, v/ 1-a -a 2 L These models are called the TLAR(2) models,

which are easily extendable to higher-order autoregressions, as

discussed in Section II.E. If a 1 < 1 and a 2 = 0 or B2 =0 , then [E is

the innovation of the new first-order autoregressive model NLAR( 1)

This model is the subject of Section II.D.

3. Autocorrelation Structure

In this section, it is shown that the autocorrelations

p() = Corr(X , X_), 9. = 0,±l,±2,... of the NLAR(2) model satisfy the

Yule-Walker type difference equations; thus the second moment dependency

aspects are indistinguishable in form from those for the AR(2) process.

We also compare the admissible regions of an AR(2) with (i) an NLAR(2)

with 4 parameters and (ii) an NLAR(2) with only two parameters.

From the independence of (K I and {K' K"}, and (II.C.1.I),
n n n

(II.C.1.2) and (II.C.2•4), we see that E(K') alp E(K") a and
n = n 2
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E( n ) n E(K n)E(Ln ) n 0. Multiplying (II.C.1.1) on both sides by Xnt we

have forZ 2: 1, E(XnXn_%) - a 1 1 E(Xn-1 Xn) + a2 82 E(Xn- 2 X n_).

Dividing by Var(X n ) we have p(-Z) a181 P(L - 1) + a282p(i - 2), since

.p (-2) p(l). Substituting ai8 i = ai for i = 1,2 and p(O) - 1, we have

p(1) -a + a2 P(1)

p(2) a aPO1) + a2  (II.C.3.1)

which are the same equations as those which occur for the AR(2) process.

Since aji ; 1 for i = 1,2 and a, + a2 < 1 in NLAR(2), the usual

triangular admissible region for AR(2) given in Box and Jenkins

[Ref. 23: p. 61] shrinks to the interior of a diamond-shaped area in

(a1 = a181, a2 = a282 ) coordinates: la, I + ja21 < 1. (See Figures

II.C.3.1a and Ib). In (p(), p(2)) coordinates the equation

p(1)' = (1 + p(2))/2 defining allowable combinations of p(1) and p(2) in

AR(2) also changes. For NLAR(2), the space in (p(1), p(2)) coordinates

becomes a triangular region bounded below by Ip(1)I = I{I + p(2)}. (See

Figures II.C.3.2a and 2b).

The reduction in allowable parameter or correlation combinations

for NLAR(2) over the AR(2) model is not large. This encouraged us to

consider a 2-parameter NLAR(2) model by specifying a for i = 1,2,1 1.

so that a. = a3. The parameter space in (a1 ,a2) coordinates becomes the
- - 2

symmetric region bounded by the curves a3±=(1 - 3/2 (see Figure

II.C.3.1c). In (8, 82) coordinates the admissible region of the two
.2

parameter model is bounded by the unit circle 82 B2 1. Using only
1 2
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K A2

two parameters leads to the admissible region in Figure II.C.3.2c for

(p(l), p(2)) space. The (p(1), p(2)) space was obtained by transforming

the lines 8 = 2 = c, -1 : c S 1, in Figure II.C.3.1c to p(2) -

(1-a2)P(1) 2 +a2  where Ip(1)I S al/(1-a ) - 81/(1-8 ) and a2 (1-a, 3/2
2 91 2 1 221

if a2 a 0 and 83 = -(1OB2)3/2 if a2 < 0.
2 2 12

All the plots in Fig. II.C.3.1 were generated from a grid of

equally spaced values of a 1 and a 2* In Fig. II.C.3.1a the points

satisfy the Yule-Walker equations (5.1). In Figs. II.C.3.1b and 1c, the

points also satisfy the conditions of Theorem 1. In Fig. II.C.3.2 the

feasible combinations of p(l) and p(2) are plotted for those values of

a and a2 from Fig. II.C.3.1 using the Yule-Walker equations (5.1).

4. Directional Moments and Partial Time Reversibility

In the last section, we demonstrated that the second moment

dependency aspects of the NLAR(2) model were indistinguishable in form

from those of the ordinary AR(2) model. Also, it is well known that if

" the linear autoregressive model is not Gaussian, then the process is not

completely determined by the first and second moments. Thus in model

identification it becomes necessary to examine third order moments to

further identify the process. Special third order moments E(X 2 X
n n+2.

for all Z, are known as directional moments. If the directional moments

for all Z are equal, which is necessary for a process to be fully time

reversible, we say the process is partially time reversible in the sense

of directional moments.

A process is fully time reversible (Lawrance [Ref. 27]) if the

joint distribution of Xn , X 1  X , is the same as that for X n+r'

X , ... X for all r and for all n. Since LAR(1), a special case of
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NLAR(2), is not fully time reversible, NLAR(2) is in general not time

reversible.

In this section we show by induction arguments that all the

third order moments of NLAR(2) are the same as those for Gaussian AR(2)

model; i.e. E(X XjX ) = 0 for i, j, k. This implies particularly that
u ik

the directional moments of NLAR(2) are equal and therefore that NLAR(2)

is always partially time reversible.

In Section II.B, we found that E(X3) = 0 for all i since X. is
. 1

marginally Standard Laplace. It is easy to establish the following two

equations:

E(XnX n  ) = 82c E(X2 Xn 1 (II.C.4.1)
n n-i 2 2 n n-i

E(X2Xn) = {(82a )/(1 -28182a la)j E(XnXn_). (II.C.4.2)
Zn n-i 2 2 1 2 1 2 n n-i

Solving (II.C.4.1) and (II.C.4.2), simultaneously yields E(X X2 )=
n n-

E(X 2Xn) = 0.
n n-i

Now, usirn separate induction arguments and the stationarity

assumption, we establish that E(XnXn_) = 0 for all Z > 1, and
n n-

E(X2X-k) = 0 for all k Z 1.
n n-

The proof of E(X X2  = 0 is straightforward.
n n-

To prove E(X2X ) = 0, we first show that the expectation of
n n-k

special third order moments of the form X X X for k > 2 is zero.
n n-i -i-k

Define 'k = E(X X Xn- and assume E(XnXn) -- 0, j < k - i. Fromk n n-i n-k n n-j
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1k=E(X~ X Xnk a a ~E(XX) + B E(X X Xk nn1nk 11 nn(k-i) 2 2 n n-1 n-(k-1)

= 21kl (a 2B2)k (II.C.4.3)

Now from (II.C.4.1) and (II.C.4.2), we have

=E(X x 2
- a) a a E( X 2X i 0. Therefore 0.=

We now proceed to show that E(X X X k 0 for all i, j, k.

Without loss of generality let i < j < k so that k i + n, j =i+ m

and n > m. Therefore by stationarity E(X.iX X k E(X.iX.i~ X. ) =

E(X X i(-)X in). Fixing m so that 0 < m < n we use induction on n.

Let n = 2, implying m = 1. The first step in the induction follows from

E(X.iX.i- X. - =P = 0. Next assume that for m < n K,

E(X.X. X )-nm - 0. Now we show that E(X.X X.i(~-)Xi(~ ) 0.

Using (II.C.i.i), we write

E(X X i ( i- )X i ( l) = a 1 E(X i 1X i ( lm)X -K l

+ ct~E(Xi 2 Xi K )X i(

i i-i(K+-m) i-(K+)

No+( E(e.)( X X i-Klm 0 andK

No (Ei Xi-(K+i -in i-(K+1 ) EE )(Xi-(K+i--m) Xi-(K+l1 0 n

E(X -1X i(lm)X i(l ) = E(X.iX i(-)X iK) = 0 by stationarity and

the assumption. Likewise E(X i2X i-KlmX ) =~

E(X X i[K1-lX i(-) =0. This completes the induction.

An immediate result from the argument about third moments is

that Z = X n X nIfor (X n of the NLAR(2) is not skewed.
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The residual analysis in [Ref. 6] and [Ref. 22] using cross

correlations between linear autoregressive residuals R = X - a X -n n In-

a2X and their squares R2 n, does not shed any new light on the
*2 n-2' n

directionality/reversibility in the NLAR(2) model or help in identifying

the appropriateness of the Laplacian model. This is because all third

moments have zero expectation. Thus, we see that E(RnRn ) =
n n+

* E(RnRn ) 0 for all Z.
* n n+i

Note that the basis for the residual analysis using the (Rn

process is that this process is uncorrelated but not necessarily

independent. The moment results show that the Rn ' have zero skewness.

nn

the distribution of -R . Thus the Rn 'S are symmetric although they

will, of course, not have Laplacian distributions.

In Chapter IV of this thesis, a residual analysis based on

certain fourth-order moments is presented.

D D. THE NEW LAPLACE FIRST-ORDER AUTOREGRESSIVE MODEL, NLAR(1)

1. Introduction

The new Laplace first-order autoregressive model is another

special case of the NLARMA(p ,q) model when q=O and p=1. This is, of

course, a special case of the NLAR(2) model, where either a2 and/or 82

are zero in (II.C.I.1). Examples of the different sample path behavior

obtainable from the NLAR(i) Process are given in Figure II.D.i.I. Note

that each sample has the same value of lag-i serial correlation, i.e.

p(i) = Corr(X X ) In Figure II.D.I.2 are the corresponding scatter
np n-i

plots for the samples in Figure II.D.I.i. In the scatter plot labeled,

vi =1, the distinctive regression line, x = PX is clearly visible
n-
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for the LAR(1) process. This is produced as explained in Section II.B,

because the innovation, E , can be zero with non-zero probability.

The two-parameter autoregressive model generates an (X ni

sequence which satisfies

X -K'8X n-

n n 1 n-1 n nI..1

where

K' - {1 wp. 1, K 1 (IID.1.2)
0 n a w.p. 1- 1  n fT***1T8 1IL nwp. p2

and

Also, tKIj, [K n, [L n} are i.i.d. sequences independent of each other

and independent of X nl X n 2 .**

From (II.D.1.2) and (II.D.1.3), we see that the inversion of the

-1/2~- 1characteristic function for E , letting X = (1-ctx (11) ,gives
n11

for O~ci <1

f E(X) =( 2 ) e xi+ 2Y. eAII I...4

which is a convex mixture of Laplace densities. This result also

follows directly from Section IIr.C.3, since the NLAR(1) model is an
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NLAR(2) model. Likewise, the correlation structure and partial time

reversibility in the sense of directional moments are the corresponding

results for the NLAR(2) model with a 2=O or B =0. That is

Corr(Xn ,Xnk) = (aa)' for all k = 0, ±1, ±2, ... (II.D.1.5)

and

E(X2Xn) = E(XXn) 0 for all k = 0, ±1, ±2. (II.D.1.6)
n. n4k n n+k

We can rewrite (II.D.1.1) as

n j-1
X n n + n Ii(O .)eKn - )c n- j "  (II.D.1.7)

n . 1=. ni -

. From (II.D.1.1), it is clear that X depends only on X and e . From
n n-1 n

(II.D.I.7), we see that Xn-I is independent of En+k for all k>O. Hence

[Xn } is a first-order Markov process and starting X with a standard

Laplace distribution makes tX n I stationary.

The remainder of this section is devoted to specific results for

the NLAR(1) process which have not been shown in the more general

NLAR(2) model. The extension of these results to the NLAR(2) process

would require the joint distribution of X n,Xn, X n-2}, which has not

been derived. The conditional density of X given X is derived, as
n n-1

well as an expression for the joint distribution of the Xn . The
n

distribution for the differences Z =X -X is also derived. Parameter
n n n-1

estimation is discussed in the context of moment estimators and least
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squares using the linearized residual. The problems with finding the

maximum likelihood estimators of a and 1 are also addressed.

2. Conditional Density and the Joint Density of (Xn,.. X 1

To find the conditional density of X given X we use!l- n n-l w

(II.D.1.1) - (II.D.1.4) to evaluate P(X n<X nXn1) We have for a1<1,

which eliminates the LAR(1) process,

SP(X nlXn 1 ) 'P(Kn1Xn-1 + En<Xn Xn-I)

= 1P(E n<X n- x n ) + (1- 1)P( n<X n

S  Ix
n 1 n-1 n

f E (x)dx + (1-I) fE(x)dx. (II.D.2.1)
n n

Differentiating (II.D.2.1) with respect to xn yields the following

expression for at1<l ,

f X I n n1 (XniXn 1 ) = 1 fn (nx 1Xn-1  + (1-1)f n(xn (II.D.2.2)
n1 n n

Examples of (II.D.2.2) for a fixed xn-1 and fixed Y IB = .64 are

given in Figure II.D.2.1.

Now we can write the joint density fnn (Xn ' Xn 1 ) as the
n n-1

product fx Xn (x Ix )fx (xn ) In fact, the n-dimensional
n' n - n- 1

distribution of X ,...,X is obtained using this product recursively to
n' 1
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obtain the density

f X... (xn '''x) fx nX (Xnl -1) fx 1 jx 2 (Xn1xn-2) ..

~fx~x (X~ll (Xl) (II.D.2.4)

3. Distribution of Differences and P(X n->Xn

We now consider the distribution of the difference Z = Xn-X

Using (II.D.1.1) - (II.D.1.4) and the fact that En is a convex mixture

of Laplacian random variables, we used partial fraction decomposition to

invert the characteristic function of Zn to obtain the following

expression for the density:

f (y ) e x fI I/ ( 1 $1 1 P 2 2- _ P2 )

Z = 1 2 {f(1 81 ) 2 }  1 (2B)

+ exp("Iyl/a)(up2 /2) 102 (I'81 )
2  (1'a

Ie y (I "c")P 2  , (1a 1)(1-p 2) + 1(1-P2),

1 
e xp( y l )  

1- 2 2 B1 (2-61)

+ (1-P2) (I-i) YIyTexp(-y l)/4, (II.D.3.1)

where o2 = (1-a )B2
1 1

59



One immediate result is that fZn (y) is symmetric about zero and
n

therefore, P(Zn <0) = P(Zn >0) - 1/2. This demonstrates one additional

feature of the partial time reversibility of the NLAR(1) models; i.e.,

*"probabilities of a run down (X >X ) and a run up (X n<X ) are the:.poaiiiso u on(n n-"l n n l

same. To evaluate probabilities of higher order runs would require the

-: joint distribution of the sequence [Zn 1. This result has not been

obtained for the NLAR(2) model.

4. Estimation of Serial Correlation

a. Introduction

The purpose of this section is to present estimators of the

two parameters a1 and 81 whose product is the correlation coefficient in

the NLAR(1) models. We assume throughout this section, unless otherwise

stated, that {X } has a standard Laplace (p=O, A1) marginal.-: n

distribution. Estimation of p and A for models that have marginal

Laplace distributions are discussed in Chapter III. We also only

consider the random coefficient models of the NLAR(1) process, i.e. a<1,

thus eliminating the LAR(1) model. As was shown in the introduction to

this chapter, for ai =, 81 can oe estimated very efficiently, thus

eliminating the need for further discussion.

The method of moments is used first to find an estimator of

Y -- a181. The joint moment estimators of a1 and 8 are calculated from

fourth-order moments. These estimators are used later in an iterative

procedure to obtain the joint least squares estimators of a and 8

A least squares estimation procedure is defined for the

NLAR(1) models using the usual linear residual R - X -B1Xn

n nil n-l'
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Minimizing the sum of R2 leads to the usual estimator of Y as given inni

standard texts on time series. In order to estimate a1 and B1

individually, we minimize the square of a particular function of Rn with

respect to a1 and 81.

* In the last part of this section, the problems of maximum

likelihood estimation in the NLAR(1) process are discussed. Although no

results are presented for the general model, the maximum likelihood

estimator of the correlation coefficient in the TLAR(1) model is given.

b. Method of Moments

(1) Estimation of Y by Second-Order Moments. Since X is~n

assumed to have a standard Laplace distribution with E(X ) --0 andn

Var(X ) - 2, an immediately obvious choice for estimatingn

Y - Corr(Xn ,X 1 ) is the following product moment:

1 n^ I X --xi
i=2Y (n-1 (II.D.4.1)

Taking the expectation of Y and using (II.D.1.1), we have

n n
1 1

E(Y) - 2(n-1) . E(XiXi 1) = 2(n-1) 2a 1 1  = 1 1 y, (II. .4.2)
i-2 i =2

so that the estimator is unbiased.

(2) Joint Estimation of a 1and 81 by Fourth-Order Moments.

The expectation of fourth-order moments can be calculated using

(II.D.1.1) and the fact that [X n  is a stationary process. For example
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E(X3X1 1  12a f1 + (2-a1 ~ (II.D.11.3)

E(XVV_ 4 (1+5a B2) ,(II.D.J4.4)

E(X.X )V 24a8 (II.D.4.5)

E(X~~~1 1  4a [ ~ii1+2a 8+3a (2-a)8l (II.D.'I.6)

Solving for a 1 and a1in different pairs of these

equations gives the estimators based on fourth-order moments. It is to

our advantage to use the expressions with the lower order moments where

possible. Therefore, using E(XVX 2  and E(X.X )instead of

E(X x 3
-) we solve for the following expressions for the joint moment

i i-

estimators of a and a1 1

nn

=2 1 i9 (II.D.'4.8)
- n

(n1 xx_ 1  4n1
% li=2

1'1

1.2 (I.D.462
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samples of size 2500. It is clear from the equations (II.D.4.7) and

(II.D.4.8) that Y - a Bi. The hyperbola can be seen in both scatter

plots. Both parts are visible for sample size of 250. However, for

pairs derived from samples of size 2500, only the part in the first

quadrant is visible.

From the Normal probability plots in Figure II.D.4.3,

there is little evidence of non-Normality for Y = a1 1 for N = 250, and

less for the estimator derived from samples of size 2500. However,

individual estimators a 1 and a1 look far less Normal for both sets of

sample sizes.

c. Least Squares Estimation in the NLAR(1) Process

(1) The Linear Residual. The properties of the linear

residual are developed for use in deriving the least squares estimators

of Y = a 1B1 and for a and 81 jointly. We begin by rewriting (II.D.1.1)

in the RCA(1) form as given in (II.C.2.1). We have

X a a X + (Kn'.c')X + Fn" (II.D.4.9)
n 1 1  n 1 ( 1 n

From this expression, there are clearly two ways to write down the

linear residual, R n The usual one from linear theory is, of course

R = XncL lXn. (II.D.4.1Q)
n n 1 1 n-l
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However, a particularly useful way of looking at it is from

R 0 (KnI- n )X +6 " (II.D.4.11)
n 1 n 1 n-1

It is from (II.D.4.11) that we see explicitly how the i.i.d. innovation,

{En } , and the coefficient {KlnI processes impact on the linear

residual.

Let be the oalgebra generated by [{(K '-') Ek;k

k=1,...,n-1]. Intuitively, ° , represents all the information

about the process up to time n-1. Conditioning on , we have the

following two useful properties of R as noted by Nicholls and Quinnn

[Ref. 16: p. 42].

E(R - = . (II.D.4.12)

E(R n - = B 2Var(K')x2  + Var( n ) (II.D.4.13)n1 n n(in)
a 1- ) 2X2_ + 2(1-aIB2)

a 1(I ) In 1 n 1 1  (II.D.4.14)

These results follow because X is a function only ofn 1

the process through (n-1) and (Kn-a I) and En are both independent of it.

(2) The Least Squares Estimator of Y = a 1B1. Using Rn from

(II.D.4.10) and a given sample from (X 1, we obtain the least squares
n

n

estimator by minimizing the sum I R 2 with respect to the product a B1
i=2 

1

which is now called Y. We have
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n
X X

-- 1 2 .,(II.D. .4.15)
n

1=2

which, in fact, is the usual expression for the estimation of serial

correlation in linear AR1) models as given, for example, in Chatfield

[Ref. 31: p. 661.

Since the NLAR(1) process is an RCA(1) process of

Nicholls and Quinn, it follows from their theorem [Ref. 16: p. 44] that

Y is strongly consistent, asymptotically unbiased and 1(xy) has an
V-jr

asymptotic Normal distribution. The asymptotic variance, from the same

results of Nicholls and Quinn, is

a 1 + B6( 1)2 (II.D.4.16)

Figures II.D.4.4-II.D.4.7 contain the boxplot analysis

of SIMTBED [Ref. 151 output for selected choices of aI and in the

simulation of the least squares estimator of the product a1B1 in the

NLAR(1) processes. Note that although the estimated asymptotic mean is

the true value, Y = a181 = .64, for each of the four sets of the

parameters, the estimated asymptotic variance of the estimator of

1 8 = '7 is different for each of the four different sets of

parameters. The simulation results reflect the asymptotic theoretical

results for the NLAR(1) processes as given above.
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An analogous result is given in Section III.E.4, where

the theory of least squares is derived for the Beta-Laplace AR(1) model.

(3) The Joint Least Squares Estimation for a1 and B It

n
is not possible to minimize I with respect to a and B individ

1-2 1

ually. However, a technique from Nicholls and Quinn [Ref. 16: p. 43],

which uses the result in (II.D.4.13) is applicable. As was pointed out

earlier in Section II.C.2, by assuming nothing about the particular

marginal distribution, Nicholls and Quinn were free to treat the

variances, 02 and a2,, as completely independent parameters subject only

to the constraint that the marginal distribution of X n1, whatever it

is, has a positive variance. Then, given (II.D.4.13), it was possible

n
to estimate o2 and o2, by minimizing the sum of squares .Sa where

.K i=2 1

= R2  
02 C 2 X2S~n n E X' n-1'(I. . .7

and R 2  (X nYX )2 and Y is from (II....4.15). They derive the
n n n-1

properties of the trivariate distribution of the estimator of

.. ... y, 02, OK,2
E K

Since c2 and U2' are related parametrically in a1 and
E K'1

the results in [Ref. 16] concerning the variances do not apply in

the NLAR(1) process. However, we can form from (II.D.4.13) and

(II.D.4.10) an analogous expression for
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S - R2  a 8 2 (1a )X2
_1 2(1a 2) (II.D.4.18)r'.. ,n n 1 I

where the product a181 in Rn is not replaced by Y from (II.D.4.15).

In terms of a sample from {X n, we define the joint

least squares estimators of a and to be those values a and B that
a1  11 an

minimize

n
a 1{(xia181xi 1) 2  1 x 1  2(1-a181)}2 ,  (II.D.4.19)

i=2

where (II.D.4.19) is the sum of the squares of S given in (II.D.4.18).n

Now it is clear that (II.D.4.19) is a highly nonlinear expression in two

unknowns, a1 and a1. A given numerical technique could converge to a

local extremum, a saddle point, or diverge depending on, among other

things, the starting values for estimating a1 and 81.

Constraining the nonlinear optimization problem given

by (II.D.4.19) to the rectangle within which the NLAR(1) process is

defined--O < a1  I and -I < 81 1--eliminates the divergence problem,

but clouds the estimation issue regarding the boundary models LAR(1) and

TLAR(1). We try an unconstrained approach described below.

(4) An Unconstrained Nonlinear Optimization of (II.D.4.19).

It is easy, but tedious, to write the normal equations from (II.D.4.19).

One critical point is at a1 = = . After factoring a 1 from the one

equation and a 1 from the second, several iterations of the Newton-

Raphson method (see, for example, Gerald [Ref. 28: pp. 122-128]) can be

performed to find other critical points. The Newton-Raphson method uses
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a second-order Taylor series approximation to solve the non-linear

system by a set of linear Jacobian equations. However, one needs to

calculate the four second partial derivatives from (II.D.4.19) and to

have a good starting point on the surface.

The IMSL routine ZSPOW solves systems of non-linear

equations for one root using modified Newton methods. This routine was

used to solve the unconstrained problem of finding a1 and aI from sets

of data from simulated NLAR(1) processes. The routine was very senstive

to starting values and did not always converge even when the sample size

was as large as 2500. It also did not perform well when the true

correlation coefficient, Y - aIBI , was small for any of the simulated

NLAR(1) processes with the same autocorrelation function, Y Ik l  This

problem is highlighted by the fact that (II.D.4.19) is constant along

the line a l . 0 and the line B = 0.

As an illustration of the performance of the routine,

500 sets of sample sizes 250 and 2500, respectively, were generated from

the NLAR(1) process with a1 = 1 .8. The scatter plot analyses in

Figures II.D.4.8 and II.D.4.9 show how the estimators a1 and I

determined by ZSPOW are related. Especially for the samples of size

250, there is the same pattern of the hyperbola as seen in the moment

estimators of a1 and B given in Section II.D.4.b.(2). From the

accompanying tables, it is clear that the variance of the marginal

distributions for each estimator a1 and is decreasing with increased

sample size. The Normal plots of the empirical marginal cumulative

distribution functions for a and for B appear very non-Normal even
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W 7

from estimators derived from samples of 2500. On the other hand, the

Normal plots of Y = a indicate that the distribution is converging to

a Normal distribution as required by theoretical results of the

previous subsection. (See Figure II.D.4.1o).

5. .It is convenient, at this point, to summarize the

results on the moment and least squares estimation of Y = a and

(ai,61 ) in the NLAR(1) processes.

In the estimation of Y, only second-order product

moments are required for both methods. From the Normal probability

plots in Figures II.D.4.3 and II.D.4.10, it appears that both estimators

of I are converging to Normal distributions. Although the moment

estimator of Y is unbiased (the least squares estimator is

asymptotically unbiased), the variance of the moment estimator of IY is

considerably larger than that of the least squares estimator of Y.

The estimation of aI and B1 requires fourthorder

product moments for both methods. The variance of the moment estimators

of a 1 and aI are too large, even for samples of size 2500 to be useful

in distinguishing between NLAR(1) processes. The least squares

*.estimators of aand Bhave smaller variances than the corresponding

moment estimators and could be useful in distinguishing between NLAR(1)

processes. However, as pointed out above, the numerical routine to find

the critical points does not always converge for a given starting value

of a and BI. The conclusion is that neither method of estimating a

and 8 is very satisfactory.
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(5) The Median (X /X ) Estimator of Y a . The median

of (Xi/X i I) was seen to be extremely efficient in the LAR(1) process.

It also makes sense in the context of maximum likelihood estimation in

LAR(i). This is discussed in the next section.

Simulation results confirm the conjecture that the

median (X i/X i ) is not a robust estimator of Y for departures from the

LAR(1) process. In fact, from the boxplots in Figures II.D.4.11 -

II.D.4.14 of SIMTBED output for four NLAR(1) processes, the estimators

seem to become more biased as 81 approaches one--corresponding to the

other boundary process, TLAR( ). Even for the small si ze of the

. simulations, the standard deviation of the mean is small. For the three

non-LAR(1) models, the asymptotic estimates of the mean of Y given in

the data are each significantly different from the theoretical value of.

Y= .64.

d. Method of Maximum Likelihood

(1) Introduction. The logarithm of the likelihood

function, L(a 1 , B ) , is obtained by taking the natural logarithm of the

n-dimensional joint density given in (II.D.2.4) and treating it as a

function of a 1 and 81 for a given realization of length n from X n}. We
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have

n
L(al,8) =-n(tn2)- Ix11 I i n[a 1 (1-P2 )exp{-Ixi-ix i_11)

+ (1-al1)(1-P)exp{-Ixil + Ct 1P2Aexp{-X xt-61 xi_ }H

+ (1-a1)P2 Xexp{-Xjx1x lt , (II.D.4.20)

where p2 was given in (II.D.13) and X -/ 1-al)B.

Maximizing (II.D.4.20) in the general NLAR(1) model is

not accomplished here for two reasons. First, L(aI,a I) is not

differentiable with respect to a at any of the n values B = x /x

for i - 1,...,n, because of the terms fxi -8x_ 1 1. A bivariate search

routine that does not use derivatives is needed.

Second, L(ai,B I) is not defined along the line a, = 1

at any of 0 < k < n values of 8 such that -1 <8 = x/x < 1. To

see this, examine the third term of the natural logarithm in

(II.D.4.20). We have replacing X for all i - 2,...,n

exp i- lXi-11 
(II.D.4.21)

V/(1- I ) j (1l-c ) a2

Because of the presence of the exponential term in (II. D.4.21), the

limit as a1 approaches one is zero, so long as 8 x /x .-" The limit

does not exist on the set B = 81181 = x/x 1 ; i =,...,n.
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It is worth noting that for a, 1, corresponding to

the LAR(1) model, and except on the set B, (II.D. 4.20), can be written

as

L(1,8 I) =-n(in2)- !x11 + (n-1)in(1-B2 )

n

- Ixi-8 1 xi 11, 81 i B. (II.D.4.22)
i=2

Now in(1-6 2) is maximized at B= 0 and the optimal value for
11

n
- Ixi -

1 x
i -

1  is the least absolute deviation (LAD) estimator of 81

i=2

* which is the weighted median of (xi/xi_ ) where the weights are xi_1 for

i = 2,...,n. Thus, if after a large number of observations from {X no

repeats of xi/x are observed, then there will be little difference

between a particular LAR(1) model and the completely random model of

i.i.d. Laplace variables. In this case, for any B in a small deleted

neighborhood around 81 = med(x./xi), (II.D.4.22) will be large because

n
both n(1-B ) and xi-xi_11 will be optimized.

1 i I

(2) The Maximum Likelihood Estimator of a in the TLAR(1)

Processes. In this section, the likelihood function for the TLAR(1)

process is described. The maximum likelihood estimator is found using a

numerical iteration scheme. The properties of the estimator are

investigated and compared to the least squares estimator using

simulation.
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For the TLAR(1) models (0 1 1 or = -1), (II.D.4.20)

can be written as a one-dimensional function of the a variable a. We

have

n

+ /1-a1 expj, (II.D.4.23)

where

x. -x. a 0,
1 1-1 (II.D. 4.24)
x+ x. aK<O,

-1 < a < 1 and a1 = (l "l

Now L(a) is continuous everywhere in the open interval

(-I,+1) and differentiable everywhere except at a = 0. The expressions

dL(a) d2 L(a)
for and are lengthy and cumbersome to use; hence are notda da 2

given here.

Examples of the likelihood curve are given in Figures

II.D.4.15 - II.D.4.18. Each curve was generated from a sample of 100

from a simulated TLAR(1) -- ocess with the stated a1 and a It is easy

to see the non-differentiable point at zero and how flat the curve is.

To see that there is a maximum (annotated with x on the figure) in these
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curves, the second part of each figure focuses on the function near the

true value of aI

The IMSL routine, ZXLSF, a one-dimensional search

routine was used to find the value of a that maximized (II.D.4.23). The

starting value a was the least squares estimator of serial correlation

given by (II.D.4.15).

Using 500 samples of sizes 50 and 500, respectively,

from simulated TLAR(M) processes with Y = .64, the scatter plot analyses

in Figures II.D.4.19 and II.D.4.20 were completed. The least squares

estimator and maximum likelihood estimator appear to be correlated.

From the accompanying tables, the maximum likelihood estimator appears

to have a smaller variance and bias than the least squares estimator.

Analysis of the boxplots from a SIMTBED comparison of the least squares

estimator and the maximum likelihoood estimator reflect the same results

(see Figures (II.D.4.21 - II.D.4.22).

From the Normal plots given in Figure II.D.4.23, both

the least squares and the maximum likelihood estimator appear to be

coverging to a Normal distribution. There are three or four outliers in

the tail out of 500 points.

E. OTHER CASES OF THE NLARMA(p,q) MODEL

1. Introduction

A primary advantage of the NLARMA(p,q) model is the ease with

which the basic framework can be altered to cover a variety of different

dependency structures. The NLAR(2) and NLAR(1) processes have been

examined closely in the previous sections of this chapter. At this
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time, the moving average first-order model, NLMA(1), and the mixed

model, NLARMA(I,I), are briefly considered. The correlation structure

and parameter space are discussed for each model.

The TLAR(1) model for which the maximum likelihood estimation

was completed, can be easily extended. As the final part of this

section, we present the p th-order autoregressive processes for arbitrary

p a 2. The conditions for existence and uniqueness, the correlation

structure and likelihood function are given. The maximum likelihood

estimation scheme for the p parameters is also discussed.

2. A Backwards MA(1) Model, NLMA(1)

a. Correlation Structure of the NLMA(1) Process

From (II.D.I.1), we see that X is the random coefficient" n

sum of independent variables each of which have a marginal Laplace

distribution. Therefore, we can replace Xn-1 by another Laplace

variable. If it is independent of L and has a standard Laplacei" n

marginal distribution, then by the construction, X will still have a
n

standard Laplace marginal distribution.

If we replace X n_, in fact, by Ln- 1 in (II.D.I.1), we

obtain the following expression for X". n

X = Kn 1L Kn n n (II.E.2.1)

where [K'} and (L I are as given in (II.D.1.2) and {K I is the
n n n

corresponding two-valued discrete variable as given in (II.C.2.4) for

the NLAR(2) model.
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Since X is by construction in (II.E.2.1) independent of
n-k

Xn for IkI Z 2, we see that the model has the cut off property of a

linear MA(i) model. The maximum range of correlations in any MA(1) is

less than or equal to 11/21, (Fuller [Ref. 29: p. 62]). This range is

achieved by the linear MA(1) models. Some of the random coefficient

MA(i) models have been shown to have a maximum range for the

Corr(XnXn-1 ) to be strictly less than one-half (see Hugus [Ref. 30]).

Using (II.E.2.1) recursively, we derive the serial

correlation in NLMA(i) as

Cov(X ,X )
Corr(Xn ,Xn  ) - n n-

n n-i Var(X )
n

E{(Kn 1L n -+Kn L n)XnI}

2

a 181 E(Ln-1 Xn_-1)

2

2 -ELn- I(n- 18 1 n-2+Kn-1 In-1] }

B BIE(KnI ). (II.E. 2.2)

Substituting in the values of the i.i.d, sequence {K n with then

corresponding probabilities p2, 1-P 2 from (II.D.1.3) we have
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Corr(XnXnI) - a1 1 (I-P2 ) + (I-a' BT P2 }

- ,2 + 8 (I( 1i-a

a a1  11 81 (II.E.2.3)

Figure II.E.2.1 is a contour plot of the level curves for

p(M) = Corr(X XnI) .  Notice that in this model, the correlation is

restricted in range over that of the linear MA(1) models. Using the

IMSL global constrained optimization routine, ZXMWD, with multiple

starts, the extremes for lag-1 serial correlation are Ip(1)I 0.4026,

occurring at al - .903 and = ±.690. In Chapter III, we give a

continuous random coefficient model with MA(1) correlation structure,

Laplace marginal distribution, and the full range of correlations, i.e.

Ip( 1 5.

b. Invertibility in NLMA(1)

It is well known (Chatfield [Ref. 31, p. 43]) that if

X nX Zn + 1 n-i9 (II.E.2.4)

.1 is a linear MA(1) model, then substituting (1/81 in for B1 does not

change the autocorrelation function. This implies that the linear MA(1)

model is not uniquely determined by its autocorrelation function.

It is also well known (Chatfield [Ref. 31: p. 43]) that by

successive substitution, the MA(1) model in (II.E.2.4) can be written as

the infinite autoregression

100
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Z a Xn + 2X n - +  (II.E.2.5)

Likewise, if 1/1 is in (II.E.2.4), we ha~e

Zn n n-- Xn_1 - - + (II.E.2.6)

Unfortunately, only one of the two processes given by (II.E.2.5) and

(II.E.2.6) yields a convergent power series depending on whether

1811 < 1 or not. Hence, the restriction on 81 called "invertibility" by

Box and Jenkins [Ref. 23: p. 50], guarantees a one-to-one

correspondence between a linear MA(1) model and its autocorrelation

function by restricting B1 to be such that the MA(1) "inverted" infinite

autoregression is the one with a convergent power series representation.

This definition of invertibility is not totally applicable

to random coefficient models (such as NLMA(1)) with MA(1) correlation

* structure because it has not been established that there exists a

corresponding infinite autoregression model.

Likewise, there can be an infinite number of models that

have the same autocorrelation function and marginal distribution. This

is the case in NLMA(1). As was seen in Figure II.E.2.1, each contour

line corresponds to a constant value of p(1) and is achievable by an

infinite number of combinations of (cI,8I).

The purpose of this section then, is to find a different,

but meaningful, way to restrict the (aI,$i) rectangle in Figure II.E.2.1
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which: (1) does not further restrict the range of p(l); and (2) which

within the region the NLMA(1) model must be uniquely determined by p(1)

and either a 1 or BI"

From the contours in Figure II.E.2.1, it appears that the

feasible region for p(1) can be partitioned in such a way that the two

goals stated above can be achieved. It is not known, however, if this

partition can be described analytically. Figure II.E.2.2 is an

illustration of the partition into a center region and two complementary

disjoint regions. The center region is roughly defined as the region to

the right of a line from (-l,.667) to (-.577,1) and to the left of a

line from (.577,1) to (1,.667). Both lines cut across the contours in

the depression on the left and on the ridge on the right. The center

region is more advantageous for two reasons. First, p(l) is a

continuous function of a 1 and in the center region. Secondly, the

parameter estimation is more likely to be easier if the most extreme

values of a1 and 1 can be avoided simultaneously. Therefore, we shall

call the center region of Figure II.E.2.2 the "principal" region.

3. A Mixed Autoregressive-Moving Average Model, NLARMA(I,I)

From the theorem in Section II.C.2, we see that any two

(possibly dependent) Laplace variables can be combined with an

• -independent set of (again, possibly dependent) Laplace variabl-s to form

- another Laplace variable. Using this property, if we replace X in
n-2

NLAR(2) by L then the marginal distribution of {X I is still

standard Laplace. We have then
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X-BK'X + B Kt1L + K L , I..3.1)n i nn-i 2 nn-1 n n'

where {K'I,K"1, (L (, K I are as previously defined.nn n" n

Notice that if K? is identically zero, correspornding to a1  0,
n

we obtain an expression of the form given by (II.E.2.i) for NLMA(i).

Likewise, if K"I is identically zero, we have the NLAROi) model as given
n

in (II.D.i.1).

The NLARMA(1 ,1I) model has the same correlation structure as the

linear mixed model ARMA(1,1). Using (II.E.3.1),

E(X X) a a 81 n-i + a a E(LniXn

+ E(X K L ).(II.E.3.2)
n-i n n

But X ,K and L are independent son-i' n n

EXn Xn-i 2a 181 +a h [a 161E(L -1X 2 )

+ a 2B2E(L n-1Ln-2  + E(L _ 1 K 1.j (II.E.3.3)

Conditioning on K ,l using the independence of tL n and

(X n2 1 ) and dividing by the Var(X ) we have

pMi Ya1 1  a+a (1-p2-P3+Ib~lpIb 3p3) , (II.E.3.4)
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where p2, P3 I 1b21' lb3 1 are defined in (II.C.2.5) through (II.C.2.9).

For Z a 2, (II.E.3.3) and (II.E.3.4) become

E(XnX ) = B E(Xn Xn ) (II.E.3.5)
nn-. 11 n-i n-i

and

p(9-) a 1 1P(Z-1). (II.E.3.6)

These equations are the same as those of the ARMA(, 1) model

(see Chatfield [Ref. 36: p. 58]). However, the range of correlations

is significantly reduced over that of ARMA(1,1). Figure II.E. 3. 1

represents a side-by-side comparison of the (p(1), p( 2 )) space for

-. NLARMA(1,1) and the familiar linear ARMA(1,1). Although p(l) can range

' . from -1 to +1, the combinations with p(2) are severely limited in

NLARMA(1,I). The minimum p(2) in NLARMA(I,1), found numerically using

the reduced gradient method is approximately -. 025 at p(l) ±.2. As

Ip(1)I increases, p(2) approaches p(l) 2.

4. Higher Order Autoregressive Models, TLAR(p)

a. Introduction

It has been stated by Raftery [Ref. 32] that there exists

NEAR(p) models for p > 2. Also, Nicholls and Quinn [Ref. 16] have given

conditions for the existence and uniqueness, strict stationary, etc.,

for general RCA(p) models. However, only for the NEAR(2) and the

NLAR(2) processes has it been shown explicitly what the necessary

innovation is; and that it is a valid random variable.
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For p 3, this has not been accomplished for the general

NEAR(p) process; nor is it done now for the NLAR(p) process. However,

dfrn ththere are 2 different p order autogressive models with p parameters

that are special cases of the NLAR(p) process. These models are called

the TLAR(p) models. The innovation for the second-order model was given

without proof following the theorem in Section II.C.2. The likelihood

function and maximum likelihood estimation of a1 was given in Section

II.D.4 for the TLAR(1) processes.

The TLAR(2) models, including the two TLAR(1) models only

account for four of the infinite number of NLAR(2) models which all have

the same AR(2) correlation structure and standard Laplace marginal

distribution. Since there is a variety of different sample path

behaviors obtainable in the general NLAR(2) model, it is possible that a

TLAR(2) model will not always be the most appropriate model for a given

set of data.

However, as is shown in the remainder of this section, the

TLAR(p) models have an advantage over the general NLAR(p) models. The

TLAR(p) processes for p > 3 exist; are easily constructed; are partially

time reversible; and are parsimonious with respect to parameters. The

parameters in the TLAR(p) process are easily estimated from the

conditional likelihood function by the met.!od of maximum likelihood.

b. Existence and Uniqueness

The TLAR(p) models p 1 1 have the form

p
X = K(i)x + (II. E. 4. 1n n n-i n

10R
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where X nI is assumed stationary with Laplace marginal distribution;

{K( ) ... K p  I- K is a p-variate discrete random variable independent
n n n

of fe } and XFor allr n Xn-i' X 2 '... .. Foaln

(1 , 0, 0,..., 0) w.p. oI

(0, 1, 0,..., 0) w.p. a2

n

(0, 0, 0,..., 1) w.p. a
p

p
(0, 0, 0,..., 0) w.p. 1 - z ai X x > 0, (II.E.4.2)

ii

(i)so E(Kn) n ai for all i - 1,...,p. The 2 choices of model arise from

the selection of signs for each of the Xn- I (either +1 or -1).

Now if {Xn I is stationary, then the following expression for

the characteristic function of the i.i.d. innovation, E n' follows from

(II.E.4.1) regardless of the choice of signs on Xn-i* (The distribution

of a symmetric random variable Z is the same as that for -Z). We have,

P (i)
"X(w) = E[exp{-iw( K n  Xnei )
n i-n -

p
- C (W) [ I ai ox (W) + X1,

n i=1 n-i
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.4.

W= () [(-) X(W) + A],
n n

from conditioning on Kn, the stationarity assumption of {Xn I and the

. independence of n of X 1 ' Xn 2 . . . . . . Therefore, substituting from

(II.B.1.2)

O =() = T -j ) W + l
= 1/(I+XW2 ). (II.E.4.3)

For A > 0, (II.E.4.3) is recognized as the characteristic function of a

scaled Laplace random variable with scale parameter IFx-.

Since (II.E.4.I1) can be written as

p (i)X = {siX + (K -aI)X .} + E (II.E.4.4)n i n-1 n -i n

and satisfies the conditions in Section II.C.2, the TLAR(p) models are

RCA(p) models. Since the innovation {E n } and {Kn I are i.i.d., then

TLAR(p) are strictly stationary and {X I is the unique solution by the
n

theorems of Nicholls and Quinn [Ref. 16: p. 31 and p. 37].

c. Correlation Structure

thThe TLAR(p) models are p -order autoregressive in the sense

that E(X Ix = x, = X = x ) is a linear function in
nn 2 .p

x. , i = ,... ,p. It is also autoregressive in the sense that it

. I.

110

........ .°.....



satisfies a set of Yule-Walker equations. Multiplying (II.E.4.1) by

X n_ , I Z 1, and taking expectations, we have

E(XnXn- a1E (Xn _1Xn -1 +...+a p E(Xnnip Xn n- (II.E.4.5)

Dividing by Var(X n ) and substituting Z = 1,...,p into (II.E.4.5), we

have the set of equations

p(l) - a1  + a2p(l) +...+a p(p-1)P

p(2) - a P(l) + a2 +...+a pp(p-2)

p(p) - alp(p-1) + a2 p(p-2) +...+ a (II.E.4.6)

where a. = ai(Sign of X n i ) for all i = 1,...,p.

For the TLAR(2) cases, the (p(i), p(2)) admissible region is

the entire diamond given in Figure II.C.3.1. It is divided, however,

into four right triangles, one per quadrant, corresponding to the sign

of Xn- 1 and Xn-2 in the model.

d. Conditional Density of XnIXn_1Xn 2 ,...,X

The conditional density for each of the 2p specific choices

of signs are easily found noting that the conditional probability is

just a sum of Laplace cumulative distributions. We have
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P(X < xX x, X x 2  x - X)li .  (n < ln-1 'Xn-2 2"'" n-p

3-P(KnlX I + K(2x2 +..+K(Px + VA-L < X)

n 1 "" p n

.a lp('F-L < x-x I ) +...+ a P(rFX-L < x-x ) + P(F--L < x)
1 n p n p n

=aF x +.. a+ F + AF---, (II.E.4.7)

where F L(.) is the cumulative distribution function of a standard

Laplace random variable. Taking derivatives with respect to x, we have

f =if L  + - I-f Lf
"x nXn-1 ..... Xn-p P /X- i=I

(II.E.4.8)

e. Conditional Maximum Likelihood Estimation of (aI, ...,a

Since there are many p-variate Laplace distributions that

(X , .... X ) could have, and that the pai L :ular one is not known to us,

it is not possible to form the exact likelihood function which is

written

n
f i- (II.E.4.9)n". . i= p+1 -Xi-1 ._"i' p ' .. ' 1

Instead, we can calculate the conditional log-likelihood

. function as the logarithm of the product of the first (n-p) terms in
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(II.E.4.9). This is commonly done. See, for example, Priestly

[Ref. 33: p. 350]. Using ai a isign(X ni), we have the following

single expression for the conditional log-likelihood function, given the

n realizations from TLAR(p) process, written as a function of a. for
E'i -

n
L(ai1 ,... a I inf

n
In, = nfxi.x ,Xi_ j

i-p+j /XI '" "" Tp

] ~~~i=p+1 ,"-jI

where

x 1 . - . if a. >  0, j
' = x. - (II. E.4.11)

vij . + X. if a. < (0,

i = p+l,...,n; = lajj and A are functions of the variable a..

We see that when p = I (II.E.4.10) and (II.E.4.11) give the

expressions used in the TLAR(1) process in Section II.D.4.

As a function of (a1 ,...,a ), (II.E.4.10) is continuous

throughout the interior of the p-dimensional subspace on which it is

defined. It is not differentiable with respect to a. anywhere that

a. = 0. The maximization of (II.E.4.10) can be formulated as a
l1

constrained non-linear program for which a numerical routine would
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probably be required to solve f or (&p,.,.) the joint conditional

likelihood estimator of (al ..a

'pp

114



- - T

III. CONTINUOUS RANDOM COEFFICIENT MODELS
WITH SYMMETRIC NON-NORMAL MARGINALS

A. INTRODUCTION

The discrete random coefficient NLARMA(p,q) models studied in the

previous chapter offered a variety of different dependency structures

analogous to their linear ARMA(p,q) counterparts as described in the

Box-Jenkins approach to time series analysis. These models, however,

could be considered deficient in some ways. For one thing, all the

models have, by design, the same marginal distribution, i.e. Laplace.

To obtain a different marginal distribution would require starting over

to develop the appropriate innovation sequence. Raftery [Ref. 32] has

reported some results in extending the NEAR framework to other models

with different marginals and ARMA correlation structures.

Furthermore, the parameter estimation, which is easy to do in

Gaussian linear AR(p) models, is not particularly easy in the

autoregressive process of the NLARMA(p,q) family. In the moving average

and mixed models of NLARMA(pq), the maximum likelihood procedure is

even more difficult. Raftery [Ref. 321 claims that the maximum

likelihood estimator of 81in the NLAR(1) process would be super-

efficient based on his work in parameter estimation in the NEAR(1)

process and the extensions that he has proposed. Super-efficiency is

not an attractive property of an estimator.
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Again, the moving average model, NLMA(1), does not allow for the

full range of correlations that are obtainable with the linear MA(1)

model.

Finally, note that there is another attractive property of the

random coefficient models that is not fully exploitable in the discrete

random coefficient models (NEAR(1) and NLAR(1)). That is, in the

NLARMA(p,q) models the coefficients of the process can change somewhat

over time and the process itself remains stationary. Andel [Ref. 34]

has noted that in many applications of time series analysis,

particularly in the fields of hydrology, meteorology and biology, the

coefficients of the model are attempting to describe complicated

processes. The coefficients may have some random behavior of their own,

apart from that usually attributed to the independent innovation

sequence.

If stationary constant coefficient models are not particularly good

at modelling such systems (as suggested by Andel [Ref. 34]), then the

NLARMA(p,q) models would not be much better because the coefficients are

limited to a finite (very small) number of possible values. However,

Lawrance and Lewis [Ref. 6] have shown in the case of NEAR(1) that it is

possible to alter the character of the sample paths of a given low-order

autoregression by extending the two-parameter model to one having 4

parameters. The number of extra parameters could be excessive and the

* costs in parameter estimation unacceptable.

In this chapter, a different family of stationary random coefficient

-time series models is introduced which retains many of the favorable

aspects of the NLARMA family (specified marginal and correlation
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structure) and offers alternatives in the areas pointed out above as

disadvantages in the NLARMA construction.

The symmetric marginal distribution can be specified by one shape

parameter to be any one of an infinite number of non-Gaussian distri-

butions. This family is the I-Laplace family and is examined in the

next section. The family--including as a special case the double

exponential (Laplace) distribution--has members with extremely high

kurtosis, as well as those that have a limiting kurtosis that approaches

that of the Gaussian distribution. This offers a significant advantage

over the NLARMA models.

Just as discrete random variables are needed for the coefficients in

the NLARMA(p,q) models, the square roots of Beta random variables are

used in this family of models to maintain the %-Laplace marginal distri-

bution. The square root Beta transformation theorem is the key result

through which all the time series models in this chapter are formulated.

By the theorem, Laplace variables are changed into those that have

Z-Laplace distributions. Previous uses of Beta random variables in

modelling non-Normal time series is evident in the models with Gamma

marginals of Lewis [Ref. 35] and Hugus [Ref. 301.

The fact that the coefficients are continuous instead of discrete

allows for a continuous variation. That they are functions of Beta

random variables restricts the variation to a bounded interval. This is

likely to facilitate the modelling of those "complicated" systems as

described by Andel [Ref. 34].
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The principal models investigated in this chapter are those with

first-order autoregressive correlation structure. They are first-order

Markov processes. For the purpose of discussing parameter estimation in

this family of autoregressive models, as opposed to the NLAR(1) family,

the focus is narrowed to that AR(1) model of the family with Laplace

marginals--the so-called Beta-Laplace First-Order Autoregressive model,

BELAR(1). Several point estimators of location and scale are discussed

and examined through simulation in SIMTBED [Ref. 15]. The one parameter

which uniquely determines all the correlations of lag k in the BELAR(1)

model can be estimated by a least squares procedure which has very nice

asymptotic properties. The maximum likelihood estimator of serial

correlation is also obtained using numerical methods.

First-order autoregressive correlation structure is not the only

type of dependency relationship that is obtainable from using the square

root Beta-Laplace transformation. In the last section of this chapter a
q~th-re

first-order moving average model and an extension to a q -order model

are introduced. The MA(1) model retains the full range of correlations

of the linear MA(1) models. This was not the case in the NLMA(1) model.

B. i-LAPLACE DISTRIBUTION

1. The i-Laplace Random Variable

It was shown in Section II.B that the standard Laplace

distribution belongs to the class of infinitely divisible distributions.

The probability density function of a Laplace distributed variable was

given in (II.B.1). The characteristic function of the standard Laplace

random variable was given in (II.B.2). Thus if



t '.<~~O x(W) x > 0 I BII
- . ..

then X is a random v~riable. In fact it is the difference of two

independent, identically distributed Gamma(%,1) random variables where 9Z

is the shape parameter and I is the scale parameter. Therefore, if X

has a characteristic function given by (III.B.1.1), then X is an

i-Laplace random variable.

Since (III.B.1.1) is a real function of w, X is a symmetric

random variable. It is easily verified that

0 if n is odd,
E(Xn)= (III.B.1.2)

S (k+1) L if n 2k, k =1,2,...,

[k]

where b = b(b+1)...(b+k-1) for all b > 0. Since all odd moments are

zero in (III.B.I.2), the i-Laplace distribution is not skewed for any

9. > 0. From (III.B.1.2) we find that the kurtosis is

E(X )- (E(X ))4 [2] [2]
n n 39. 3 3 I.B13

2 Var 2 (X n ) (29)z = 3 + .•

The kurtosis approaches 3 as Z + ®, which corresponds to that of a

Normal distribution.

Since an 9-Laplace random variable, X(C, is the difference of

two i.i.d. Gamma(,1) random variables, we obtain the density for X(Z)

by using conditional 2xpectations.
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If G 1(Z, 1 and G 2(Z, 1 are the i i d. Gammna( Z, 1 random

variables, then conditioning on G 2(1.,1), we have

P(X<x) = P(G 1 -G 2 <x) = E G {P(G 1-G G2<xjG 2=g)1

2

Since Gamma random variables are non.-negative,

0 if g : -X

P(G 1Kx+g) =Xg if g > X,

4where F (x+g) is the cumulative distribution function of G .The

expressions are shortened from G.(Z, 1) to G( Z, 1) because they are

i.i.d. Therefore, (III.B.1.4) can be written as

g =0

P(X<x) f F G(x-g)f G(g)dy, (III.B. 1.6)

g=L(x)

* where

g Z1 exp(-g) g > 0,

f G(g;2.) =M

0otherwise, (II.B.1.7)

is the density of a Gamma (Z, 1 random variable and again , because of

the non-negativity
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J"0 if x a 0,
L(x) -

- -x if x < 0. (III.B. 1.8)

Differentiating (III.B.1.6) using Leibniz' rule for the

derivative of an integral with variable limits, we have, after some

simplification

f (u;z)= f) g(g) exp{-(2g+u)} dg. (III.B.1.9)
g-L(u) ggu)

Now if Z is a positive integer, (III.B.1.9) can be evaluated

analytically using integration by parts. If Z = 1 we obtain the density

of the standard Laplace distribution. For i = 2,3,4 the densities are

also well known derivations given, for example, as textbook problems by

Feller [Ref. 25: p. 64]. Feller however looks at the results of

(III.B.1.9) as the n-fold convolution (n - 2,3,4) of i.i.d. standard

Laplace random variables. Figure III.B.1.1 shows che densities of the

Z-Laplace random variable for Z = 1,2,3,4. Note how the graphs take on

the shape of a Normal density with 02 = 2Z.

2. Numerical Evaluation of the 2-Laplace Density

If 9 > 0 and is not an integer, then (III.B.1.9) must be

evaluated numerically. We will be interested in the evaluation of the

density in (III.B.1.9) for 0 < 2 < 1, in order to calculate conditional

densities and likelihood function.

121



-r 0

-4

4

n0

LU H

Zi -4 0

-7"-
a,4

(f)

<1 10 4

4J

4J

U 122



Figure III.B.2.1 displays examples of densities for non-integral

i obtained by using the IMSL numerical integration scheme DCADRE to

evaluate (III.B.1.9). The upper limit of integration in (III.B.1.9) is

replaced by a suitable constant m > 1. Since for g > 1 and fixed 9 and

U > 0,

".(9) g(g+u) exp{-(2g+u)} < exp{-(u+2g)} (III.B.2.I)

FrI (9) (IIIB r"2

then

(u;9) <exp{-(u +2m)1
IDCADRE-fx(U;i)l < 2r2 (i) (III.B.2.2)

Difficulty in integrating comes about because of the singularity

at the lower limit of integration. If 9Z 1, this singularity

disappears by rewriting (1/(g(g+p)) as (g(g+p)) - For k < 1, there

are two alternatives for removing the singularity. We can transform the

variable of integration, g, to become t = g and the singularity at

g = 0 is removed. Or, we could do an integration by parts to remove

either the singularity at g = 0 for u > 0 or at g = -u for u < 0. In

either case, the remaining integral must be evaluated numerically for

Since X is a symmetric random variable we can rewrite

(III.B.1.9) using integration by parts to obtain an expression that will

be easier to apply. For all u , 0

123

..-



-4

-4

)

OfH

LI

LLJ 4-

0 I4

o cn

1)-4

u~0 0 11

(X~0)

124Z



fxpu ;2. I.r(g. g~ [(g+u L)+1 -1}
xg (g+juj) 22

If Z. : .5 note that f (u) is not defined at 'i=0. For Z. > .5 andx
U - 0,

f (;) - r(g£{2 (gu) 22Z.11 <-g. (III.B.2.4)

3. The Square Root Beta-Laplace Transformation

The principal result of this section is the proof of the so-

called square root Beta-Laplace transformation theorem. By this

technique, an t-Laplace random variable can be transformed into an

z 2 -Laplace random variable where % 2 z2. The time series models

developed in Sections III.C - III.F rely on the followingt

Theorem:

Let X - 2.-Laplace and B - Beta(a,l2-a), where 0 < a < 2. and B is

defined on the interval [O,1], i.e. standard Beta. If Y = B 12X, then

Y - a-Laplace.

Proof:

By conditioning on B, we obtain the following expression for the

characteristic function of Y;

=y Etexp(iB 12XW)1
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1 /2
EB[E~exp(ib XW) }]

E B [{i/(l+bW2)1i I. (III.B.3.1)

Since bw2 > 0, a convergent power series representation of

(III.B.3.1) is given by

[k]
(w) EB{ I - (-w )kbk}, (III.B.3.2)Y B ~k=O k

where again Z Z(Z+I)... (Z+k-I) for k = 1,2....; 1.

Interchanging the expectation and summation in a convergent

power series gives

00 [k]
iy (W) I k! (-W') E(Bk)" (III.B. 3.3)

k=O

From Johnson and Kotz [Ref. 36: v. 2, p. 40], we have

E(Bk) = a[k] /[k] for k integer. (III.B.3.4)

Substituting (III.B.3.4) and (III.B.3.3), we have

.::)k 1 OLy(W) = [ k! (_ W ) (I- 2 . (III.B.3.5)

k=O Q.E. D.
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C. L-LAPLACE FIRST-ORDER AUTOREGRESSIVE TIME SERIES MODEL

1. Introduction

In this section, we exploit the square root Beta-Laplace

transform to define a 2-parameter first-order autoregressive model in

i-Laplace variables. The first parameter, Z, determines the non-

Gaussian symmetric marginal distribution of the time series ensemble.

The second parameter, a, given the value of Z, determines uniquely the

lag-1 serial correlation. Since the model is shown to be first-order

Markovian, a determines the entire autocorrelation function up to the

sign. We show also that the models are always partially time reversible

with respect to both runs probabilities and directional moments.

Writing the stationary time series {X (i)} in the form of an
n

additive random coefficient equation, we have

1n )  A/2 ,1B/2
X W = A (a, %-C)X (t) + B (i-a,a)L (i), (III.C.1.1)
n n n-i n n

where {Xn()} is assumed to be a stationary time series with a marginal
n

i-Laplace distribution; [A 1/2,n  -)} is an i.i.d. sequence such that
n

A (ca,t-a) is a standard Beta; [B (/2 a) is an i.i.d. sequencen n

independent of A (/2, i-a)} such that B (Z-a,a) is also standard Beta;
n n

and {L ()} is an i.i.d. sequence, independent of the coefficient
n

processes, such that L (i) is i-Laplace. The coefficient A (ci-a) and

n n

B n(-a,) are assumed to be independent of Xn 1 , Xn- 2, etc. If it is

assumed that X n-i ( ) has a i-Laplace distribution, then by the theorem

in Section III.B.3 so does X (). The fact that the process is
n
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Markovian follows by construction. To start the process in the

stationary distribution set X (Z) - L ().0 0

The parameter space is I > 0 and 0 S a S L.
For the Beta random variables An and Bn (hence their square

roots) to be properly defined, each of the parameters must be positive.

Hence, when a = 0 or a = Z, (III.C.1.1) as defined above is no longer

appropriate because each of AI / 2 and B1/ 2 has a parameter that is
n n

identically zero. If a = 0, it is understood that the [A 112 } sequence
n

is identically zero and the B 1/ 2 } sequence is one; therefore,
n

(III.C.1.1) becomes X () = Ln ( and the [X I sequence is the [L n
,' nn n

corresponding to the i.i.d. i-Laplace case. For a = L, AI /2 is one and
n

11/2B n is identically zero; therefore, if X0 = L0 (Z), then X isn n

i-Laplace, but is not an ergodic process.

If we let

= B 12(- a ,c)L (2) (III.C.1.2)
n n n

then by the Theorem in Section III.B.3, En (Z-a)-Laplace with
n

E(e n ) - 0 and Var(E n ) 2(Z-) for all n. Since the variance must be
n n

non-negative, it is also necessary that a < Z. By the stationarity of
1/2

[X ) and since A (12 ,Z-a)X (Z) is independent of E . then n n-1 n

characteristic function of the right-hand side of (III.C.1.1) gives

(W 1+2 1+W2 ~ = J+W2~ 1101.,.
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Examples of sample path behavior for selected 9 and a are given in

Figure III.C.1.1. Note that although the correlation coefficient is

approximately 0.8 for all sets of I and a in Figure III.C.1.1, there is

considerable difference in the sample path behavior as Z changes. For

the samples from small values of L(.10 and .05), there are runs of

values that are very nearly zero in magnitude.

2. Correlation Structure

- Using equation (III.C.l.1) recursively along with the

stationarity and independence of the process {X n}, we have

E{Xn(9)X M (9)}
p(l) = Corr(Xn (),X n1) E{X ()

n-1

E[ {1 /2(

E[tA (a,9.-a)X (M) +EI ()]
n n-i n n-i

E(X2  (9))
n-1

1n/2
niA n-i 1/2

(E{A (a, - )). (III.C.2.1)
n-1

From Johnson and Kotz [Ref. 36: v. 2, p. 40], we have for

A - Beta(a,Z-a), that
n

E(A (,Z-a)) - for all n, r > 0, (III.C.2.2)n r(Z+r)r(a)

where r(.) is the incomplete Gamma function. Therefore
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p(1) = r(a+l/2) r(,) ar(a+11/2) r( Z+1 .
r( Z+1/2)r(a) r(%+1 /2)r(a+1)

Note that as a i i, then p(l) 1 1. Similarly as a - O, p(1) 0.

Therefore, we obtain a full range of positive correlations in a

one-to-one function of a for any given value of L.

Also from (III.C.I.1), we see that the process is explicitly

autoregressive. It is also autoregressive in the sense of expectations

in that E(Xn (9)IX n-() - x) is a linear function of x. Since

(III.C.1.1) defines a first-order Markovian process, p(k) p(1) kI for

all k. To see this we write for all k

E{X n()X n-k (W)

p(k) 2~2Z.
~E{ Xn I (9)Xn- (.))}

= E{ 1/2(, -) n- n-k

n 2

- p(l)p(k-1)

= p(1)p(k-2)p(1)

1/2 1/2If we replace A (c,Z-ac) in (III.C.1.1) by -A ci,,-c) we have
n n

PM F~(a+1l/2) r() V or(a+l1/2) r(Z+1 ) il .25(1) = - r(z+1 /2) r() - Zr(c+1 12)r(i+1) li.C.2.5)
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We can, therefore, achieve a full range of negative correlations, and

likewise

p(k) = (-l)IkI{p(l)}IkI for all k. (III.C.2.6)

3. Partial Time Reversibility

The i-Laplace first-order autoregressive models are partially

time reversible, both with respect to the directional moments,

{X 2 (Z)X (i)} for m = 0, ±1, ±2,..., and with respect to runs
n n-n

probabilities, P{X n()<X n(1 = P{X n()>Xn 1 ()1.

Using mathematical induction, stationarity of (X n()}, and the

independence of the coefficients and the innovation from each other and

previous values of [X ()}, it is the case that {X2 (Z)X ()1
n n n-i

= E{X (Z)X 2  (W)} = 0 for all n and for all m = O, 1, 2 ...... Let
n n-in

X - Z-Laplace. For m = 0, E(X3) = 0 by (III.B.I.2). Assuming for m = k
n n

tha, E(X 2 X ) = 0, we have for m = k+1 after substituting from
n n-k

(III.C.1.1) and (III.C.1.2) that

EjX2X I = E{(A X2 +-2A1 x n (2))
n n-(k+1) n n-i n n n n-(k+l)

E(An)E EX2_ }
n nC IEx 1X (k+l)

= E(A )E(XnXn ) = 0. (III.C.3.1)n n n-k

Assuming for m k that E(XnX ) = 0, we have for m = k+l after
n n-k

substituting gain from (III.C.1.l) and (III.C.1.2)
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EX X2  I - E{X 2  (AI /2 X ) }
n n-(k+1) n-(k+i) n n-1+ n

1/2
=E(A )E[X 2 _ X 1

n n- (k+1) n-

11/2
E(A )E(X2 kX) 0. (III.C.3.2)

n n --

To see that this model is also partially time reversible with

respect to runs probabilities, we show that the random variable Z = X
n n

- 1 is symmetric. Now Z is symmetric if and only if the

characteristic function of Z is real valued. We write
n

OZ(W) = E[exp{iw(X n  X nI]

11/2
- E[exp[iw{( -(1-A )X )]]

n n n-1

= Etexp(iwE )}E[exp{-iw(1-A 12)X I]

= 1+W2 EA[E[exp{-iw(1-a 12)X 1
] ]

E 1 (III.C.3.3
.... i~~+(i-aI 2 2 2 ""

Since (IiI.C.3.3) is real valued that concludes the proof.
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D. THE BETA-LAPLACE AUTOREGRESSIVE MODEL, BELAR(I)

1. Introduction

In this section, we set Z = 1 in (III.C.1.1) and (III.C.1.2) to

obtain the following expression for the BELAR(1) process

Xn An -) + n' (IIl.D.1.1)"' n n n-1 n

where [E } is an i.i.d. sequence with n - (1-a)-Laplace with momentsnn

and density given by (III.B.1.2) and (III.B.2.3). X now has a standard
n

Laplace marginal distribution. The only parameter in the model is a

with 0 < a < 1. All the results of Section III.C still hold with Z = 1.

* Examples of sample path behavior are given in Figure III.D.1.1.

- " We do two things in this section. First, we derive the

equa!t ns for the conditional density of X nXn 1 . The second is the

derivatlon of joint density and the logarithm of the likelihood

funct ion. The expression is used in Section III.E.6 to obtain the

maximum likelihood estimate for a.

2 The Conditional Density

To find the conditional density of XnlXn_ , we will need the

I ,-sity of A n a, -a). Let A be a standard Beta random variable with

parameters (a, I-a). Since A is defined only on the given interval,
n

zero to one
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1/2 n a<
P(A (a)= P( a)

0 otherwise

x=a 2

- f ~ (x;a)dx, 0 < a < 1, (III.D.2.1)

x=0

where f (x-ct) is the standard Beta(cz,l-) density given by
A
n

aa1(1-a) '/r(ci)r(1-a) 0 < a < 1,

fA n{xa otherwise. (III.D.2.2)

* Differentiating (III.D.2.1) with respect to a, we obtain the following

expression for

f (a-cs) - 2 a0 < a < 1. (I11.D.2.3)
A1/2 r(a)rl)(1-a 2 a
n

Examples of (111.D.2.3) are given in Figure III.D.2.1.

Now we evaluate P(X n< xix =-y) using (111.D.1.1), (III.B.1.2),

1/2
and (III.B.2.3). Conditioning on A (ci,l-cx) we obtain

n

136



4

0 0.4

L.LJ

9 C 0

L - 0' ' * -

a)-

ID. 0
6 0 44

(n 0
1-4 U)

Ll6 6

0

~II* U' 9

*ELI

Lii 137



P(Xn< XX--'Y) - P{A (a,1+ £n < XIXn 1=Y}

= E [P{ < x - yA1 12 (a 1 -)IA 2 =all
A 1/2  nnn
n

= E {P( n < x-ay)}
1/2 n
n

= E IF (x-ay) }
1/2 E

A n
n

a=L 2(x)

-- F (x-ay) fA12(a;a) da (III.D.2.4)

a=L (x) n

where from (III.B.2.3) the cumulative distribution function of E can be

written as
I il[[i!u=x-aY

1 + af (u;1-a)du if x-ay a 0,
2

F (x-ay) (III.D.2.5)

n

.["/i' u -a y- x
ufay-x f (u;1-ct)du if x-ay < 0,

u=O

and L.(x), i = 1,2 are the limits of integration on a which may be
i

functions of x.
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Since F (x-ay) changes definition for negative and positive
Cn

(x-ay) and since 0 < a < 1, we rewrite (III.D.2.4) based on the ratio

x/y, which is a constant. Thus

a-1

f F (x-ay)f 1 /2 (a;a)da if x/y Z 1 or x/y 0;
n A

a-0 n

P(X <XIXn1=y) = (III.D.2.6)in
a=x/yfX/YF (x-ay)f I/ 2 (a;a)da

a=0 n Ana-0 n

a=1
+ f F (x-ay)f (a;c)da if 0 < x/y < 1

a=x/y nn

Differentiating (III.D.2.4) with respect to x using Leibniz'

rule gives the following general expression for the conditional density.

We have

f = -{ P(X (x IXn=y

XIX \AIY dx n n-1~~

a=L (x)
2

f f f (x-ay;1-c)f 1 1 2 (a;a)da

a=L 1(x) n

+ Fn{X-yL2 (x)lf (2{L (x);} dL2(x)
E 2 1/2 2dx 2
n A

n
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Fx-yL(X)f [2 {L (x);al-L (x). (III.D.2.7)
1 A

n

From (III.B.2.3), (III.D.2.3) and (III.D.2.5) set

2a-1 -ci
h(g,a) = a exp{-(2g+Ix-ayj)} g1(2g+a1x-ay'+c) (III.D.2.8)

rF3(1 -c) r( a) ( 1 -a2) (g+lx-ayl)I+O' (1-a) I .D 2 8

Now using (III.D.2.7) to differentiate each expression in (III.D.2.6),

we have the following explicit expressions for

a=1 g=-
f f h(g,a)dgda if x/y 1 I or x/y < 0

a=O g=0

f XnlXn-1 (xIY) - (III.D.2.9)

a=x/y g=,
i:' j h(g,a)dgda

a=O g=0

a=1 g=-
+ f f h(g,a)dgda if 0 < x/y < 1

a=x/y g=O

It will be seen later that working with (III.D.2.9) will be

inconvenient. Hence, we rewrite (III.D.2.9) as
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a-i1.~

f f{(xay);1-c1f 1 /2 (a;a)da if x/y

a=0 n n or x/y 0

(xly) - (III.D.2. 10).Xn IXn-1
a=x/y

f {(x-ay);1-alf 
(a;a)da

a=O n

a=1
+ f en(x-ay);1-a}f A1/2(a;a)da if 0 < x/y < 1.
a=x/y n

The conditional density in (III.D.2.10) can assume different

shapes as a function of x depending on the fixed conditioning value, y,

and the particular, fixed a. If a 0 0, then (III.D.2.10) becomes the

standard Laplace density as given in (II.B.1.1) with v = 0 and X = 1.

If y = 0, then (III.D.2.10) becomes the (1-a)-Laplace density as given

in (III.B.2.3) with Z = 1-a. In Figure III.D.2.2 are presented different

examples of (III.D.2.10) for a fixed y and different values of a. Note

that if a < 1/2 then (III.D.2.10) is continuous for all x. If a 1/2

and x = y, (III.D.2.10) is undefined, e.g., x = y = 0.

In a similar manner, expressions for (III.D.2.4)-(III.D.2.10)

can be derived for the BELAR(1) model with negative correlations.
1 /2

Placing -A (a,l-a) in (III.D.1.1), we replace x-ay by x+ay andn

determine the appropriatc form of the conditional density based on the

ratio (-x/y). We have for the negative BELAR(1) process
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a-1
f {(x+ay);1- f 1 /2(a;)da

asO n n

if -x/y Z 1 or -x/y . 0,

f XnlXnX1 (xly) - (III.D.2.11)

a--x/y
f {(x+ay),l-lf /2 (a;ca)daIn A

a-0 n

a--1

f f {(x+ay);1-a}fA1 /2 (a;a)da
En A

a- -x/y n

if 0 < -x/y < 1.

3. The Joint Distribution and the Likelihood Function

An expression for the joint density of Xn ".. X 1 can be written

using fX nXn-1 (XnlXn-1) and f 1(x1 ) as follows:

n-1fx X . .X1 (x n ' .... 
)i f X l x1 H fX( n (-n

n' 1 ' f1 k=1 fn- (k-l) iXn-k x n ( - ) x - )

(III.D.3. 1)

The log-likelihood function as a function of a given {X I is just then

natural logarithm of (III.D.3.1). We have

n-1{L(a.) = -(in 2 + 1x1 1) + k1 in{fXIX ( ki nk *LL) -(n2 xl k 1 lnfXn-(k-1)l X n-k (x n - (k - 1 ) l x n - k ) } "

(II.D.3.2)
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It is now a simple matter to determine which branch of

(III.D.2.10) or (III.D.2.11) is needed for each pair (xnXnI) and to

substitute it into the sum in (III.D.3.2). We postpone further

discussion of the likelihood function until Section III.E.6.

4. Numerical Evaluation of the Conditional Density

a. Introduction

This section is devoted to explaining the methodology by

which we came to resolve the problems in the numerical integration of

the conditional density. This is as important an issue as the

derivation itself, since the likelihood function and the maximum

likelihood estimators can not be evaluated without it. As is pointed

out below, the standard numerical routines were unsuccessful in

accurately evaluating (III.D.2.9) around the singularities in

(III.D.2.8). We also give and justify the approximations that were used

to remove each of the singularities. The graphs in Figure III.D.2.2

were obtained using the method. The methodology was used again in

Section III.E.6 to evaluate the log-likelihood function in the method of

maximum likelihood estimation.

In the FORTRAN routine that calculates the conditional

density as given in (III.D.2.10), the approximations in (III.D 4.6)

(III.D.4.8) and (III.D.4.11) are added to the results from DCADRE.

Combinations of these approximations are invoked as necessary depending

on the ratio x/y.

The same procedure is used to evaluate the density in

(III.D.2.11) for the BELAR(1) model which produces negative correlations
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for odd lags. We just check for 0 < -x/y < 1 and choose the appropriate

value of c in (III.D.4.6) and (III.D.4.8) where x-ay is replaced by

x+ay.

b. The Methodology

Attempts to evalute the conditional density, as given by

(III.D.2.8) and (III.D.2.9), using the standard IMSL double integration

routines failed. Even the IMSL routine DBLIN which is often successful

in handling ill-behaved integrands, was unable to evaluate (III.D.2.8)

around the singularities. For a < 1/2, along the lines a = 0 and a - 1,

(III.D.2.8) is unbounded. Similarly for a . 1/2, along the line a = I

and at the pcir" (g,a) = (O,x/y) for 0 < x/y < 1, (III.D.2.8) is

unbounded. Arbitrarily declaring (III.D.2.8) to be zero under these

conditions did not always allow DBLIN to accurately evaluate

(III.D.2.9).

We succeeded in evaluating the conditional density by

working with the form given by (III.D.2.10) with f (a;a) given by
A112AI / 2

n

(III.D.2.3) and f t(x-ay);1-a} given by (III.B.2.3). We uspd the IMSLEC
n

routine DCADRE to construct an extensive table of values for the (1-cX)-

Laplace density with the intention to linearly interpolate from the

table as needed. The error in the value of f (!ul;1- ) in the table is
E

controlled by DCADRE. The error in the value of f (1uo0 ;1-o,) obtained

by using linear interpolation for luol not in the table is calculated in

the standard way. From Gerald [Ref. 28: p. 168]
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d 2f I"11a

lError Interpolation = h2s(s1) (II.D..1)2 du, IID4)

where h is subinterval length and s u (U0-u)/h. Substituting the second

divided difference into (III.D.4. ) in place of the unknown second

derivative and also noting that the worst case for linear interpolation

is at the center of the subinterval, we have

JError Interpolationj < ,Af (l;1-a) (III.D.4.2)
8 n

where A 2f is the second difference. Because f (Jul;1-a) is non-E E

n n

negative and monotone decreasing in ul , the largest values of A2 f are

in subintervals close to zero. The table that was constructed,

therefore, uses smaller subintervals close to zero and larger

subintervals further out.

Finally we used DCADRE again to evaluate (III.D.2.10) except

*. near the singularities, which we were able to evaluate analytically and

*. then add back. The technique is often referred to as "removing the

* singularity".

c. Removing the Singularities Due to (III.D.2.3)

We now describe how we evaluated the integrals in

(rl.D.2.10) in the vicinity of the .3ingularities in (III.D.2.3). We

11/2
see that the density of A (tI-) given in (III.D.2.3) is undefined at

n

a = 0 and a = 1 for a < 1/2 and at a 1 1 for t > 1/2. We also note from

(III.D.2.3) that for small 6 > 0 and a < 1/2
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2a
1f (a;) a1- )0 < a 6; (III.D.4.3)

A /2 r(a)(1-a)
n

and for all 0 < a <I

f. fA 112(a;a) 1 a -6 < a < 1 (III.D.4.4)

Therefore for a < 1/2 and 1 < x/y or x/y < 0 we have from (III.D.4.3)

S•a-6 a=S 2a 2a-1

f /2(a;a)f x-ay);1-ada {(x-ay);1-zda.
A 112yIjU f r(a)r-a)E

a=0 n a=0 (III.D. 4.5)

Since f (.) is continuous in this situation, there exists a number c so
n

that 0 < c < 6 and Ixn Ix-cyl < Ix-6yj and

a=6 2ac-1 a=6 2a-1
S a (_f {(x-ay);1-oL}da = f {(x-cy);l-}L 1-2a da

f (~ N ( 1-c) E £)r agn  gna=0 a =0

S(1-a)6 2

= f {(x-cy ;1-C} (2-) (I+)

n
(III.D.4.6)

A natural approximation for c allows Ix-cyj to be the average,

(1/2)12x-6yl.

For all a and I < x/y or x/y < 0 we have from (III.D.4.4)
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a= 1

f (a;ci)f {(x-ay);1-alda

a=1-6 An

a1 1 2a f* {(x-ay);1-cilda (III.D.LI.7)

a=1 -6

Likewise there exists a new number c so that 1-6 < c < 1 and

Ix-yI < Ix-cyl < Ix-y+6yj and

a=1 1 2a ~ fxa)1ad

a=1 -6

f {(x-cy);1-lJ a= 1 2a Jda

f tHx-cy);1-xl (26c)(1-ai (III.D.4.3)

Again a natural approximation for c allows jx-cyj to be the average,

(1/2)1 2(x-y)+6yl

d. Removing the Singularity Due to (III.B.2.3)

The f inal type of singularity occurs when 0 < a =x/y <

and cc Z 1 /2 . When this situation occurs we leave f ()under the
n

i nt egral and argue that in a 6-neighborhood around x/y < I,

f, (a 12 f (x/'y;i). Note that by the same argument that gave us
A 12A12

n n
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T - V - ".

(III.D.4.6) and (III.D.4.8), there exist two numbers c and c2 so that

(x/y)-6 < c x/y and x/y c 2  (x/y)+6 and

' - a--x/y

If AI/2 (a;(x)f : [(x-ay) ;1-a~da

nA na=(x/y)-6 n

a=(x/y)+6
+ f fA12 (a;(c)f tn{(x-ay);1-alda

a=x/y n

a=x/yf fA112 (c1 ;at) f f {;(x-ay);l-cajda

n a=(x/y)-6 n

a=(x/y)+5
+ f A1/2 (c2;a) f f {(x-ay);1-a}da. (III.D.4.9)

n a=x/y n

We chose to approximate c1 and c 2 both by x/y for x/y 1 _ 1, and have

f A12(x/y;t) < - for all a. If x/y = 1 or x = 0 and y = 0 simnultane-

n

ously, the value of (III.D.2.10) is undefined for a 1 1/2.

Now changing the variable of integration so that (x-ay) =u,

we have from (III.D.4.9) that for all a > 1/2

a=x/y a;(x/y)+6I f t(x-ay);1-a}da f I {(x-ay);a}da,
f- E nfE n

(x/y)-6 n a=x/y n
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U-Iy'5I
T f (u;l1-c) d u

because f ()is a symmetric density. That is (III.D.'4.10) is an
n

expression for 1P(0 < E < jy6j) where Enis the (1-a)-Laplace

innovation random variable. Therefore, we add back to the DCADRE result

the amount

)f*1 112 Kya[( < nK IY&61 f (-+f1/2(x/Y;a) < y *0.
n n (III.D.'4.11)

We choos e t he f oll1ow ing comb inati on as the val ue f or

P(O E ~1Y6). Using the trapezoidal rule and the table of values for

the (1-cx)--Laplace density we found

u=1y61 n

Equation (111.D.4.12) is the average of the upper and lower Riemani sums

of the tail of the densi ty subtracted f rom 1/12. Using (111. D.4. 12)

instead of directly integrating f (u;l-ci) from zero to IY6I is
n

preferrable, because for ax 1/2, f (0;1-ax) is undefined. The error in
E
n
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(III.D.4.12) from using the trapezoidal rule approximation is

h,3
approximately 1 A2 f (i) in the i subinterval. Even though there

are over 400 subintervals, the second differences A2f (i) are very much
e

smaller for a a 1/2 in the interval [1y61 ,M].

ii) A second measure of P(O<en< 1y6I) is the lower sum

P2 ( 0 < < -Y) - IY61f I(y);1-a}, (III.D.4.13)
n

since P(O < en < jy61) is always at least as large as (III.D.4.13). Our

approximation for P(O < En < jy~l) is the maximum of (III.D.4.12) and

(III.D.4.13). We use the maximum because P1 given by (III.D.4.12) could

be negative when jy61 is close to zero. This follows because F (u;1-a)
E
n

is strictly decreasing for u > 0, and thus the trapezoidal rule over-

estimates the integral in (III.D.4.12).

E. PARAMETER ESTIMATION IN THE BELAR(1) PROCESS

1. Introduction

In this section, we develop estimators for the parameters in the

BELAR(1) process and report results on properties of these estimators

obtained from analytical comparisons and simulations. We examine

estimators for the location parameter, p, and the scale paramter, A,

of the series (X n ; the parameter, a, of the random coefficientn
1/2A a,1-), and Y, the lag-1 serial correlation, which is a monotone

function of a.
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The theory of conditional least squares estimation for the

BELAR(1) process using the linearized residual is derived using results

- from Nicholls and Quinn [Ref. 16]. We give a corollary to their Theorem

3.1 pertaining to the strong convergence and asymptotic Normality of the

least squares estimator of Y, the lag-1 serial correlation. An estimate

1/2
i for a is derived using the fact that Y = E{A ( Also, we show

that the joint least squares estimator of location and correlation for

the BELAR(1) process is the same as for the linear AR(1) processes.

Other estimators of lag-1 serial correlation in the BELAR(1)

process are derived using the ideas of robust estimation of Huber

[Ref. 37] and least absolute deviation (LAD) estimation as applied to

ordinary linear autoregressive models by Denby and Martin [Ref. 38] and

Bloomfield and Steiger [Ref. 39]. Although these estimators are

consistent and asymptotically unbiased in linear models, for the random

coefficient models the results of the simulation study show that they

have a bias that does not go to zero asymptotically.

The maximum likelihood estimator of a, XMLE' is found using an

iterative technique with the initial estimate being derived from the

least squares estimate of serial correlation, YLS"

Many of the simulations comparing the different estimators are

conducted within the framework of SIMTBED [Ref. 15]. From the Summary

Statistics table generated by SIMTBED for each estimator, it is possible

to draw conclusions concerning the bias, the variance at different

subsample sizes, the asymptotic variance, and how fast the estimator

approaches asymptotic Normality. In the SIMTBED program, one can

specify the total number of samples examined at each subsample size.
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The total number of samples used is the product of three parameters, N,

M, and NSR. Three combinations of these parameters were used. Table

III.E.1.1 is a summary of the number and types of subsample sizes, N,

and the number of independent repetitions, M, of each type of simulation

conducted using SIMTBED.

TABLE III.E.1.1

Summary of SIMTBED Types

Number of
(N) Super

Subsample Sizes (N) Replications

Type 25 50 75 100 125 175 250 500 (NSR)

I 2000 1000 660 500 400 280 200 100 5
II 4000 2000 1330 1000 800 570 400 200 10

III 8000 4000 2660 2000 1600 1140 800 400 10

Each entry in a Summary Statistics table, which is the output of

SIMTBED after super replication, is a pair corresponding to a mean

(average over the number of super replications, 5 or 10) and an

estimated standard deviation of that mean value. From Table III.E.1.1,

it is clear that a large number of independent realizations was used in

the computation for each super replication and the different subsample

sizes. Because of this, subsequent tests of hypothesis that we use on

the simulation outputs will be t-tests on the mean of a random sample of

size 5 or 10 drawn from a Normal population where 02 is unknown, but is

estimated from the sample.

Before describing each estimator and simulation experiment, it

is convenient now to summarize the conclusions of this investigation

into the estimation of parameters in the BELAR(1) process:
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a. The simulation results from SIMTBED indicate that both the sample

median and sample mean are asymptotically Normal estimators of P.

The asymptotic variance of the sample mean is approximately twice

that of the sample median across all values of the correlation

coefficient, Y.

b. The simulation results from SIMTBED also indicate that the mean

absolute deviation, given in (II.E.3.2), is an unbiased and

asymptoti lly Normal estimator of the scale parameter, X. It

also has the smallest asymptotic variance of the three estimators

considered.

c. The least squares estimator of Y, the lag-1 serial correlation is

asymptotically unbiased and Normally distributed. Simulation

results suppurt this conclusion.

d. Simulation of other estimators of lag-1 serial correlation based

on non-linear residuals of the form R - X -YX + Bf(X ,X
n n n-i n n-i

indicates that the value of (Y,B) that maximizes the sum of

squares of Rn is approximately (YLS'0 ).

e. Robust estimators of serial correlation based on certain symmetric

loss furctions of the linear residual (other than the sum of

squares) are biased and, apparently, asymptotically biased.

SIMTBED outputs of the Huber(c), rank and LAD estimators of lag-1

serial correlation clearly exhibited this result.

f. The maximum likelihood estimator of Y, the lag-1 serial

correlation was computed by the iteration scheme given in Section

III.E.6 for simulated data from the BELAR(1) process. Results of

the simulation appear to indicate that the estimator is converging
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to a Normal distribution with a mean value equal to the true Y.

In comparison to the least squares estimator, the simulation

results indicate that the maximum likelihood estimator has a

smaller variance and bias at all values of Y.

2. Estimators of Location

a. Introduction

The sample median, m, and the sample mean, X, are two

commonly used estimators of the location parameter, p, in a stationary

process with a symmetric marginal distribution. The sample median is a

particularly attractive alernative to X when the symmetric distribution

is also thick-tailed. (It is well known that for i.i.d. processes with

0a double exponential marginal distribution that the sample medi n is the

maximum likelihood estimator of V).

For i.i.d. processes, it is well known (Dudewiez, [Ref. 0:

p. 221]) that X has an asymptotically Normal distribution, N(O,V/o'n).

Likewise, m is asymptotically Normal, N{O, '1/4nf 2 (x )}. The results
X .5

for the sample median hold provided f (x.) is continuous in a
X .5

neighborhood around x 5 , is positive, and is bounded above.

The problem of estimating p from dependent data is more

difficult. Analytical results exist about the limiting distribution for

in ergodic processes and for the sample median for processes

satisfying certain mixing conditions. (Mixing processes are those for

which random variables "sufficiently far apart" are approximately

independent).
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Since the BELAR(1) process is an RCA(1) process with i.i.d.

innovation and random coefficient processes, {X 1, is ergodic (Nicholls
n

and Quinn [Ref. 16: P. 37]). Therefore X is still an unbiased

asymptotically Normal estimator of )j, but the variance is modified oy

the factor

1 2 . k (I y)/(1-Y). (III.E.2.1)
k=1

See, for example, Priestly [Ref. 33: p. 343].

The problem of estimating the median has been studied for

cases where the data are dependent. From Heidelberger and Lewis

[Ref. 41)], we have that the usual order statistic point estimate

(sample median) is still valid, but the variance is modified by a

factor, p(x 5 ). Here p(x ) is the initial point on the spectrum of the
5 .5

binary process (I (x )}, where
n .5

1 if X ;ix
n(x) ; n (III.E.2.2)

" 0 otherwise.

That is

n
p(x 5 ) =lim n Var { [ I (x )/n}. (III.E.2.3)

i=1I

As was already pointed out, conditions for convergence and

Central Limit Theorems for the sample median depend on mixing
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conditions. There are several kinds of mixing conditions. It is not

known, however, if the BELAR(1) process satisfies any of them.

However, the LAR(1) process does satisfy the mixing

conditions of Gastwirth and Rubin [Ref. 14]. Thus, for the LAR(1)

process, it is known that the sample median has an asymptotic Normal

distribution with mean zero, and variance given by

+® l .5 k ) 5Y jk j II+j

. { k cosh(x k + sinh(x. I)} = ?l-'(. (III.E.2.4)

Gastwirth and Rubin [Ref. 14] showed that for the LAR(1)

process, the asymptotic variance of X is twice that of the sample median

across all values of serial correlation.

The question here is, what are the properties of the sample

median in estimating u from data of the BELAR(1) process? Also, how does

the sample median compare to X in the BELAR(1) process?

Since X n I from both the BELAR(1) and the LAR'1) processes

have a marginal Laplace distribution and first-order autoregressive

correlation structure, the hypothesis is that the sample median from the

BELAR(1) process behaves similarily to that generated from data in the

LAR(1) process. Also, the relative efficiency of m to X is the sam0 In

the two processes.

To substantiate this assumption, the sample median and

sample mean were compared in simulation experiments in SIMTBED for data

generated from the BELAR(1) process. The simulation output is compared

to the theoretical results for the LAR(1) process.
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- b. Simulation Results

For a = .1 and a corresponding correlation coefficient of

Y - .17664, the estimators X and m were simulated in SIMTBED using a

size of Type III from Table III.E.1.1. The results are given in the

Summary Statistics in Table III.E.2.1. Looking at Table III.E.2.1 for

N = 100 and greater, there is no evidence of non-Normality from the

first four estimated moments of the sample mean. The leading

coefficient in the asymptotic expansions for E(T) and Var(X) do not

deviate significantly from the theoretical values, i.e. X is unbiased

and Var(X) 2.8581/N.

Looking at Table III.E.2.2, the Summary Statistics at a .1

for m, it appears that even for N = 25, m is unbiased and the sample

skewness is fluctuating about zero. The variance, however, at each

subsample size up to N = 250 deviates significantly from a hypothetical

asymptotic variance of 1.4291/N, the corresponding result for LAR(1).

* This is explained by the kurtosis of the estimate m of the median which,

although decreasing with increased subsample size, is still

significantly different from 0 until N = 250. The leading coefficients

in the expansions for the expectation and for the varianc are not

significantly different from 0 and 1.4291 respectively. Since the data

are only slightly correlated, we could have expected the sample median

to behave similarily to that of the case of the completely random

process with Laplace marginals, i.e. m is unbiased, asymptotically

Normal, and has a variance with leading coefficient 1/n.
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For values of a = .5 and .844, with corresponding Y = .63662

and .89986, using Type II experiments as described in Table III.E.1.1,

we again compared the behavior of T and m.

From Tables III .E.2.3 and III. E. 2 .4, we see that the

.] behavior of X is as expected. The sample mean appears to be unbiased.

For N >- 250, there is no evidence of non-Normality. The estimates of

the leading coefficient in the asymptotic expansions for the variance

agree within one standard deviation of the postulated values of 9.0 and

38.

The corresponding results for m are given in Tables

III.E.2.5 and III.E.2.6. The sample median shows no bias and appears to

be asymptotically Normal after N > 250. In each case (a = .5 and

a = .844) the leading coefficient in the expansion for the variance is

smaller than the corresponding value for the variance of the sample

median in the LAR(1) process, i.e. 4.5 and 19 respectively.

The analysis thus far has indicated that at least for data

with non-negative correlation in the BELAR(1) process, there is little

evidence to suggest that the behavior of the sample median is

significantly different than in the LAR(1) process. From Table

III.E.2.7, we see the same kind of results that Gastwirth and Rubin

[Ref. 14] reported. As sample size increases, the efficiency of X

relative to m drops to 50%.
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TABLE III.E.2.7

Efficiency of X Relative to m in BELAR(1) for Y > 0

N Y - +.1766 Y = +.63662 Y =+.9

25 .64 .69 .98
50 .58 .58 .81
75 .55 .55 .73
100 .54 .52 .67
125 .52 .50 .62
175 .53 .49 .57
250 .51 .47 .53
500 .50 .47 .48

1. For Y - +.1766 the results are based on a Type III experiment.
For the other two cases, the results are based on Type II
experiments.

We also simulated T and m for negatively correlated data

from the BELAR(1) process. Type III simulations were used for X and m

at Y = -.63662 and a Type II simulation for X at Y = -.9. From the

Summary Statistics for X in Tables III.E.2.8 and III.E.2.9, we see X is

unbiased and approximately Normal for sample sizes greater than 125.

Estimates for the coefficients for the asymptotic variance are not

significantly different from the theoretical values of .4441 and .1053.

From Table III.E.2.10, the most obvious point to be made is that

even for moderately negatively correlated data, m is not Normally

distributed even for subsamples of size 500. The sample median is

unbiased, but the kurtosis is not decreasing fast enough. The variance

of the sample median even at N = 500 is almost certainly not

1/N)(1+Y/1-Y). However, the leading coefficient in the expansion for
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the asymptotic variance is within a standard deviation of the

hypothetical values (1/N)(1 +Y/1-Y). This would indicate, for the case

of negative correlation, a much slower convergence of the sample median

to Normality than for positively correlated data.

For negatively correlated data from the BELAR(1) process, we

have observed that X does not lose efficiency relative to m as fast as

for non-negatively correlated data. In fact, from Tables III.E.2.8 and

III.E.2.10, it is clear that the variance of X is smaller than m for

subsample size N < 100.

3. Estimators of Scale

a. Introduction

In the case of estimating the scale parameter, A, we

considered three estimators. Since Var(X n ) = 2A 2 , we considered
n

A = S/-2 where

N." :'" $2 = l i I X )2. (III.E.3 1

Since the maximum likelihood estimator of X for an i.i.d. sample with

marginal Laplace distribution is the sample mean absolute deviation

about the median, we set

- N

A2  i IXi mI. (III.E.3.2)
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As a third alternative, we chose the scaled median absolute deviation

about the median,

A3 = .69315 3" (III.E.3.3)

The scaled median absolute deviation is a frequently used robust

estimator of scale [Ref. 38]. In the simulations, we assumed that Xn

are Laplace with median = mean = 0 for all n. Table III.E.3.1 contains

a summary of the type simulation (as defined in Table III.E.1.1), the

estimator(X I, 2,x 3) and the values of a and Y that were used.

TABLE III.E.3.1

Summary of Simulation Schedule for Estimators of X

Y -.89986 .17664 .63662

c .844 .1 .5

Estimator

A1  Type II Type III Type I

A2  Type II Type III Type I

A Type II Type III Type I

b. Simulation Results

In the Type III simulation (See Tables III.E.3.2 -

III.E.3.4), using slightly correlated (Y = .17664) realizations of the

BELAR(1) process, we found the best estimator of A to be X 2, the sample

mean absolute deviation. It appears to be unbiased for all subsample

sizes. The skewness and kurtosis are decreasing with increased sample
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sizes. But even for N = 500, the skewness is still significantly

different than 0. Using two-sided t-tests with 18 degrees of freedom

for the equality of means of two Normal populations with unknown

variances at the 90% confidence level, we reject each of the hypotheses

independently that: (1) Var(A 1) = Var(A 2 ) and (2) Var(A 1) = Var(X3
1 2 13

The mean relative asymptotic efficiency of A2 and X3 to XI are estimated

from the regression on variance coefficients to be 76% for A and 60%

for A13.

Both X and X3 appear from the simulation to be biased.

From the second coefficient in the mean of regression on average in

Table III.E.3.2, X1 appears to have a negative bias of order(1/N). From

Table III.E.3.4 it appears that A3 has a positive bias of order(I/N).

However, since the leading term in the expansion of the mean for both

estimators is the true value of Y, it appears that both A and A3 are

asymptotically unbiased.

When we considered moderately to highly correlated data (see

Tables III.E.3.5 - III.E.3.10), the differences in the behavior of the

estimators were not as easy to discern. The particular bias of A1 and

A3 was even more apparent, especially at the smaller subsample sizes.

As IJI increased, so did the expressions for the asymptotic variances.

At each of the subsample sizes, in both types of correlation, X3 had the

highest estimated variance. The variance of A was significantly3

different than that of A at all levels of significance and subsample
2

sizes up to N = 500. However, we could not reject that the asymptotic

variances of A1, A2 and A were the same at each of the two levels of
2r t3

correlation.
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4. Least Squares Estimation of Serial Correlation

In tY's section, it is assumed, unless otherwise stated, that X
n

has a standard Laplace (1 - O,X = 1) distribution. If not, standardize

X by
n

X -i~
V= ^ , (III.E..I)

- n

where u and X will be specified from those estimators already discussed

in III.E.2 and IiI.E.3.

The least squares estimator of the lag-1 serial corrlation, YLS'

is derived. First, we show that the BELAR(1) process is an RCA(1)

process of Nicholls and Quinn [Ref. 16]. Then, we define the linearized

resicual in the BELAR(1) process and state some of its properties. From

these properties and some results from Nicholls and Quinn for RCA

processes, we derive the asymptotic properties of YLS The properties
LS

of Y are ob erved also in the simulation result, for selected values
LS

of Y. Finally, the joint least squares estimator of location and serial

correlation are derived "or the BELAR(1) process.

Rewriting (III.D.1.1) by adding and subtracting YXn-l, we have

X YX + {Al11 2 (i,-c) + (III.E.4.2)
n n-1 n n-i n

1/2where Y = E A (a, 1-a)} as given by (III.C.2.3) for
n

112Z - 1;[A1 (a,i-) - Y} is ar i.i.d. process stochastically independent
n

of the i.i.d. {e }. The variance of the random coefficient is (x - Y2 )
n
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for all n. As can be seen from (III.C.2.5) and the fact that 0 < a < 1,

if we know a, then we also know IYI and vice-versa. That is, in the

BELAR(1) process, there is only one independent parameter to estimate

for the correlation. Now, we recognize (III.E.4.2) immediately as an

RCA(1) process of Nicholls and Quinn [Ref. 161. Since { I andn
,1 /2(

JA (aI-a) - Y) are each identically distributed as well as being
n

serially independent and independent of each other, we have by theorem

2.7 [Ref. 16] that {Xn I is the unique strictly stationary and ergodic

solution to (III.E.4.2).

There arc two ways to look at the linearized residual in the

BELAR(1) process just as described in Chapter II for the NLAR(1) model:

2R = {A (al-a) -YIX +(III.E.4

n n n-1 n'

or

Rn  Xn  - Xn I . (III.E.4.4)

From (III.E. 4. 4), we see that since {X I is strictly stationary, so isn

{R n. Also, we see E(Rn ) = 0 and Var(R n ) = 2(1-Y 2 ). Lawrance and Lewis

[Ref. 22] proved that the R are uncorrelated, but in general, notn

independent. From (III.E.4.3), we note that for any n, R * E unless
n n

a = 0. Except for when a = 0 or 1, Var(R n ) > Var(En). As a increasesn n

from zero to one, both Var(R ) and Var(E ) decrease monotonically from
n n

two to zero. This is evident from the definition of Y in (III.C.2.5)

with Z = 1.
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Two other properties of [R I are obtained from (III.E.4..3) by
n

conditioning on the independent, identically distributed processes {E }k

and A 1/2( ,1-) - Y} up to time k = n - 1. We have
k

E[ RnI{ k,A ' 2 (aI-a) - Y}; k = 1,2,...,n-I]

1 /2
= Xn- E{A (a 1-a) - Y} + E(En ) n 0, (III.E.4.5)

because [A (a,1-a) - YI and E are independent of the process through
n  n

time n-1 and Xn- is a function only of the process through n-1.

E[RnI{Ek A k (cL,-a) - Y); k = 1,2,...,n-1]n k k ' ' '

E E: + X2 1/2
= E(En) + x2  E[{A (a,1-}) -Y)'1

n n-1 n

= 2(I-cx) + x2  ( -y 2 ), (III.E.4.6)

which is only a function of a or Y2 alone, since a determines Y2 and

vice-versa.

Now using (III.E.4.4) and a given realization of (X I of size n,
n

n
we minimize L R. with respect to Y to obtain the conditional least

i=2 1

squares estimate for Y. This is the same procedure as described for the

NLAR(1) process. We have

* .n n

LS x i -I / X 1) (III.E.4.7)
i=2 i=2
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Two problems can occur using (III.E.4.7), especially for small

sample lzes. For the BELAR(1) process defined by (III.E.4.2)

1 a Y a 0, and yet it is possible that YLS < 0 or IYLS1 > 1. If

" - -1 < YLS < 0, we would estimate that the sample {Xn I came from the

BELAR(1) process with the negative sign on A /2(a,l-a). If I-I > 1, we
n

would estimate Y by +1 or -1.

In order to obtain the "least squares" estimate for a, we solve

numerically for L in

LS

= 2 r(a LS1/2)... LS r(&LS) , (III.E. 4.8)
= 2 LS

for a given YLS from (5.7) if IYLsI < 1.

The estimator YLS given by (III.E.4.7) has the following

properties which we state as a corollary to Theorm 3.1 [Ref. 161:

CORROLLARY. For [X I given by (III E.4.2); [R I in (III.E.4.3)n n

and (III.E.4.4), the least squares estimator YLS has the following

properties:

a) YLS . Y ;

1 2 A

b) Since E(X) = 24 < , (N-I) (YL-Y) has a distribution
n LS

which converges to the Normal with a mean of zero and a variance oy

given by
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2= 21+5a-6y (III.E.4.9)

The proof follows from Theorem(3.1). The strict stationarity

and ergodic nature of {X I leads to the almost sure convergence. The
n

results of (III.E. 4.5) and (III.E.4.6), together with Billingsley's

Martingale Central Limit Theorem provide the results for the asymptotic

Normality of YLS'

A strongly consistent estimator for the variance, 02, is also
Y i

given in [Ref. 16] for the general RCA(1) process. For o in

(III.E.4.9), this estimate becomes

!!O2= (n-i) (1-&L) ^ n (&LS S)i!2 i -

B2 (n-1) LS V LS LS i=2 (III.E.4.10)
Y n n i=n n

X2._ V

i -i i=2

For large n (III.E.4.1O) is approximated by

n

(n-1)(&LS - y2 ) i-
^Y LS (n ^ ) +L = (II I.E. 4.11)

LS LS S n

,. i 2  2

where Y LS is from (III.E.4.7) and PLS (III.E.4.8).

Simulations of the least squares estimator of Y were conducted

for selected values of "Y in SIMTBED using Type III plans. The results

are summarized in Tables III.E.4.1, III.E.4.2 and III.E.4.3. The

1 86
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results reflect the theoretical behavior of the estimator as derived

above.

We note that the joint conditional least squares estimators of

and Y in the BELAR(1) process are the same as in the linear AR(1)

n
processes. Minimizing the sum X R. where now

i=2

R. = (X.i- ) - Y(Xi-1I- ), (III.E.4.12)

leads to the following joint estimators for p and Y

n n
= X i  - Y Xi 1 / (n-1)(1--Y), (III.mE.4.13)

i=2 i =2

n n
-= (Xi- )(Xi- 1i) / (Xi ) (III.E.4.14)

i=2 i=2

For large n these equations reduce to the familiar ones

-- g(III.E.4.15)

n n
.[y _ I (Xi (Xi 1 ) / (X 1 X 2. (I II. E. 4.16)

i=2 i=2

We now turn in the next section to the question of alternative

estimators for Y given that p = 0 and = 1.
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5. Other Estimators of the Lag-1 Serial Correlation

a. Estimators Based on a Non-linear Residual

In this section, we explore other possibilities for

estimating Y in the BELAR(1) process. There is a question as to why one

should use the linear residual since the BELAR(1) process is a random

coefficient process which is non-linear. Secondly, why should you

minimize the square of the linear residual as opposed to minimizing some

other symmetric loss function which is a function of the linear

residual? The answer to both questions is that the least squares

estimator of 'Y based on the linear residual out-performed other

estimators in the simulation experiment.

* Consider the following types of non-linear residuals

* 2
Rn  = Xn -YX n -(X n -2), (III.E.5.1)

R' = X -YX - Sign(Xn). (III.E.5.2)n n n-1 n-1 n-1

From (III.E.5.1), it follows that R has zero mean and
n

Var(R n ) n 2(1-'y2 +105 2 ), (III.E.5.3)

Cov(Rn,R ) = 20a62. (±II.E.5.4)
n n-i

Introducing the extra parameter, 6, makes the residuals, Rn, correlated

unless a - 0 or B 0 0. If B is zero, then we again have the usual

linearized residual in (III.E.4.4). If B2 = y2 /I0, then the variance is

a constant, but the residuals are still correlated. It is easy to
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compute the least squares estimators for Y and 8 from (III.E.5.1) and

S. ~ (III.E.5.2). We simulated the estimators of Y and B and compared them

to the results based on (III.E.4.4) with B = 0. From Table III.E.5.1,

we see that the different estimators of Y from all three residuals are

close to the true Y. The result is that the estimates of 8 are very

close to zero.

To see how much the value of Y could change with B fixed at

some non-zero values, we simulated the least squares estimator of Y with

8 = 0 and the estimator of Y based on (III.E.5.1) with B = Y/-0- and

again with B = -Y//-10. From Table III.E.5.2, we see that B 6 0

severely alters the estimate of the serial correlation. Therefore, in

the remainder of this subsection, we consider alternative estimators for

Y in the BELAR(1) process to be only those based on the linear residual.

b. Estimators Based on the Linear Residual, Rn

Besides the asymptotically unbiased least squares estimator,

we considered the following well-known estimators of Y in linear AR(1)

models:

1) The Huber(c) function as described by Denby and Martin [Ref. 383.

The estimator, YH' is the value of Y that satisfies the

equation

n

-, i x H (x ,-YX ) = 0, (III.E.5.5)
i=2
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TABLE 111.3.5.1

Simulation Results for Various Definitions of Rn in BELAR(1)

1. N - 500 a - .5 Y = Corr(X n,X n-) .63662

DATA YLS 0 Y 8 Y' 8'

Xl .56891 0 .57192 .00279 .62082 -.01771
X2 .61996 0 .61630 -.00815 .56054 +.01637
X3 .62651 0 .62604 .00358 .78189 -.05808
X4 .57995 0 .58374 -.01 865 .75716 -.07208
X5 .59236 0 .59233 -.02100 .70995 -.04748
AVG .59754 .59807 -.00829 .68607 -.03580
STD .02499 .02257 .01154 .09330 .03535
BIAS -.03908 -.03855 -.00829 +.04945 -.03580

2. N = 1000 a = .5 Y = Corr(X n Xn-) .63662

DATA Y = 0 Y B y 8'

Yi .63026 0 .62955 -.00423 .62985 .00013
Y2 .67422 0 .65653 .02520 .59178 .03095
Y3 .62566 0 .62921 -.00590 .59646 .01093
Y4 .67738 0 .67777 .00233 .60522 .02359
Y5 .64664 0 .64784 -.00560 .62841 .00581
AVG .65083 .64818 .00236 .61034 .011428
STD .02411 .02032 .01320 .01782 .01273
BIAS +.01 421 +.01156 +.00236 -.02628 +.01 428

3. N = 1500 a = .75 Y = Corr(Xn ,Xn-) .83463

DATA Y LS 8=0 Y 8 Y' 8'

Zi .81183 0 .81671 .00797 .86364 -.01821
Z2 .80699 0 .80700 -.00040 .82072 -.00511
Z3 .81 777 0 .81 795 -.001 60 .83399 -.00641
Z4 .85279 0 .85569 -.00728 .89116 -.00193
AVG .82235 .82434 -.00033 .85238 -.01041
STD .02077 .021'17 .00629 .03147 .00598
BIAS -.01229 -.01029 -.00033 +.01775 -.01041
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TABLE III.E.5.2

Simulation Results for Various Definitions
of R to Estimate Y Given 8 in BELAR(1)

n

N = 500; = .5 Y = .63662

DATA (YLSIB .a) (Y
V1 10 Y --

1 .56891 .27552 .27410
2 .61996 .21515 .26257
3 .62695 .38621 .38450
4 .57995 .34356 .39730
5 .59236 .36082 .40557

where

Jt if Iti s C,
TH(t) = (III.E.5.6)

I. Sign(t) if It I > c.

The corresponding weight function w H(t) is T H(t)/t and c is

a tuning constant. As c goes to infinity TH (t) approaches t and YH is

the least squares estimator of Y. If c = 0, we have the solution of

(III.E.5.5) is the median of Xi/Xi_1 .

For c other than 0 or -, there is no closed-form solution to

(III.E.5.5). We obtain the Huber(c) estimator of Y by iterating the

following scheme:

n

i xixi-1 wH s.^ i=2 r

Y k+1 A (III.E.5.7)".n r x.-Yrx-1
i - WH r
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--
where Y is the least squares estimator of Y and

median fxil
Sr .69315 ' (III.E.5.8)

is the scaling constant for the R.. If Y 0, then S is the median
1 r

absolute deviation estimator of the scale parameter in the Laplace

distribution as given in Section III.E.3. Typical values of c are 1,

1.5, 2. We use for illustration c = 1 in the simulation along with YLS'

the least squares estimate, and YM' the median (X i/X i).

2) The Least Absolute Deviation (LAD) estimator of Y is the minimizer

of

n
Ixi- xi_ . (III.E.5.9)

i-=2

The solution is, YWM' the weighted median of xi/xi I where

the weights are xi I for i = 2,...,n.

Denby and Martin [Ref. 38] reported that the Huber(c)

estimates are consistent and asymptotically unbiased for linear AR(1)

models. Bloomfield and Steiger [Ref. 39] showed that the LAD estimator

is strongly consistent and asymptotically unbiased for linear AR(1)

models. In Figures III.E.5.1 - III.E.5.4 are examples from SIMTBED of

the behavior of these estimators in simulated data from LAR(1), a linear

AR(1) model with Laplacian marginals and AR(1) correlation structure

given in Chapter II. These results appear to be consistent with the

results reported above for linear AR(1) processes. The leading

coefficient in the expansion for the mean of each estimator does not
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differ significantly from the true value, 0.63662. We also see that the

median (X /X i_) and the weighted median (X i/X i_) estimators are'considerably more efficient than either the Huber(c) estimator in Figure

III.E.5.3 or the least squares estimator (c =) in Figure III.E.5.4.

Since the least squares estimator remains asymptotically

unbiased for the BELAR(1) process as was shown in Section III.E.4, it

was of interest to observe how the Huber(c) estimators, c < ®, and the

LAD estimator of Y would behave. Considering the ordering suggested by

the simulation results in the LAR(1) process, it would seem possible

that the Huber(c) estimates could be better than the least squares

estimator of Y. In the boxplot analyses in Figures III.E.5.5 -

III.E.5.8 are the results of the simulation for Y = .63662, but for

data from the BELAR(1) process. The boxplots in Figure III.E.5.5

display the theoretical behavior of the least squares estimator of Y.

The other estimators of Y appear to be converging to other values

Y * Y. To see this, note the first entry in the coefficients for the

asymptotic expansion of the mean of Y in Figures III.E.5.6 - III.E.5.8.

In each case I > Y. Also from the estimate of the standard deviation,

we assert that Y is significantly larger than Y for each of the

alternative estimators investigated here, because the difference,

I - 0, is larger than four standard deviations.

For the BELAR(1) process, we observe a reversal from the

LAR(1) process in preference for the estimator of Y. We will use the

least squares estimator as the initial estimator of Y in the iterative

procedure for finding the maximum likelihood estimator of Y which we

develop next.
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6. Maximum Likelihood Estimation of Y

a. Introduction

In this section, we develop the maximum likelihood estimator

of the lag-1 serial correlation in the BELAR() process, Y We use
MLE*

the expression for the logarithm of the likelihood function, L(a), in

(III.D.2.12) in an iterative procedure to find the values of a and the

sign of A 1/2(a,1-a), that minimizes -L(a); call the pair (MLEsgn 6LMLE'sign)'

.2 1/2
Since knowing a and the sign of AIn (a,I-a) uniquely defines Y, YMLE can

be found from (III.E.4.8) using (1ML E , sign).

We consider only the univariate problem. That is, we have

assumed that {X I is marginally Laplace distributed or have determined

from Q-Q plots that the best %-Laplace fit to the data is when Z. = .

Secondly, we assumed that {X I is standard Laplace (v = 0; X = 1) or
n

that [X has been standardized using a pair of estimators ( X, A) fromn

Sections III.E.2. and III.E.3.

As a function of a, (III.D.2.12) is very complicated. There

is little hope of being able to analytically solve for the critical

values of a. In fact, the evaluation of a derivative of (III.D.2.12) is

at least as expensive computationally as the function values themselves,

since (III.D.2.12) contains exponential functions of a. However, since

this is a one-dimensional optimization problem, there are IMSL routines

that will perform the search without using deviatives--Golden Section

search; bisection method; or interpolation routines.

We chose the IMSL routine ZXLSF which performs a one-

dimensional search for a minimum of a smooth function in a closed

interval using quadratic interpolation. The FORTRAN routine which
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evaluates (III.D.2.12) is formulated so that ZXLSF is searching on the

:interval (-1,1) where a < 0 implies that conditional densities of the

U form (III.D.2.10) are being evaluated instead of those given by

(III.D.2.9) when a > 0. The initial value for a to start the iteration

procedure of ZXLSF is a four-digit approximation (aLS, signLS)

corresponding to the least squares estimate of serial correlation, YLS'

obtained from (III.E.4.8).

The queston of accuracy in the calculation of (III.D.2.12)

is especially important because the likelihood surface is extremely flat

* in many cases. We want some assurance that ZXLSF is efficiently

searching for the optimum and not "chasing roundoff errors". This

happened before we increased the accuracy parameter in DCADRE and used

double precision. In order to assess the accuracy of our calculations,

we constructed first- and second-divided differences for values of a and

(III.D.2.12). The divided differences are approximations for the

derivatives. For those simulations that we checked, there was one

transition of the slope through zero at the critical point found by

ZXSLF. The second-divided differences at all points in the vicinity of

the critical value were positive indicating the general convex upward

shape of (III.D.2.12). Sometimes there was some fluctuation in values

of the second-divided differences, but no change of signs near the

reported optimum.

The fluctuating values of the second-divided difference

indicated some noise in the calculations. This occurred in two places.

If the second-divided difference covered points on both sides of

a = 1/2, then there was often a jump in the value of the second-divided
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difference. This occurred because of the change in the method of

calculating the conditional density when a changed from a < .5 to

a Z .5. Other times, slight aberrations in the observed pattern of the

second-divided differences occurred for values of a that were small,

0 < a < .15. This is attributed to the fact that DCADRE evaluations for

the table of values of the (1-a)-Laplace density (0 < a < .15) in many

subintervals was not behaving regularly. The computed value was

accepted because the estimated error was small, relative to the accuracy

requirements. The important consideration, however, was that no error

in calculating (III.D.2.12) should be so large as to falsely indicate a

change in convexity in the vicinity of an extremum, so that ZXLSF would

be ineffective at locating it.

The selection of a good starting point in this procedure is

also important. It is desirable to commence the iteration in ZXLSF as

close to the global optimum as possible in order to reduce the

possibility of converging to a local optimium. Note, also, that as a

function of a, the conditional density is not necessarily convex and

often is not even unimodal across the range from Y = +1 to Y = -I.

Since (III.D.2.12) is the logarithm of the product of such

functions, there is no assurance that (III.D.2.12) has a single relative

maximum especially for small sample sizes. When the sample size is

small, it is advisable to pick a starting value for the iteration on

both sides of a = 0. Select the maximum likelihood estimator to be the

* one with the higher value of L(a) if the routine produces two different

a's, corresponding to the pairs (,) and 2-
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Since we know that Y is a consistent, asymptotically
LS

unbiased and asymptotically Normally distributed estimator for Y, we

chose the value of a and model corresponding to YLS as our initial guess

in ZXLSF.

b. Simulation Results

The maximum likelihood routine for estimating Y was tested

in simulations using computer generated data from the BELAR(1) process

with known parameter values of Z, U, X and a. By performing M

independent simulations of sample size N (where N is increased for each

set of M simulations) and fixed a, we were able to compare the standard

deviation and bias (if any), of 'MLE to that of the initial least

squares estimator YLS' for which the asymptotic distribution is Normal.

Changes in the Normal plots for one set of M simulations for N small to

*- a second set of M simulations for a larger N would give some indication

of how fast YML E is or is not converging to a Normal distribution.

Both M and N were small in thc £ mulations for two reasons.

Since the asymptotic distribution of YLS was known, it was of more

interest to see how much better YMLE was for the smaller samples (i.e.,

was the bias smaller for Y or was it, in fact, unbiased). Secondly,
MLE

the run times for calculating (III.D.2.12) for N < 200 was long. The

V., evaluation per sample of size N = 25 ranged from 100-300 secs. For

N = 175, the run times ranged from 700-950 secs.

Figures III.E.6.1, III.E.6.2 and III.E.6.3 are the Normal

plots of twenty realizations of the maximum likelihood estimator of

serial correlation and the least squares estimator of serial correlation

for simulated data from the BELAR(1) process for selected values of a
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and for two subsample sizes, SSN. The layout provides for two-way

comparisons. That is, YMLE from smaller SSN can be compared to Y for

larger SSN. Likewise, for a given SSN, MLE can be compared to YLS'

7. which is known to have an asymptotic Normal distribution. The straight

line in the Normal plots corresponds to a Normal distribution. The

curved lines correspond to the Kolmogorov-Smirnoff bounds calculated

from the data at the 95% confidence level by the routine in the IBM

experimental APL routine called GRAFSTAT.

It appears from these figures that for the larger values of

SSN, YMLE and YLS fit Normal distributions better than the corresponding

* samples from the smaller values of SSN. It also appears that YMLE fits

a Normal distribution as well as the YLS for the larger values of SSN.

This supports the notion that the maximum likelihood estimator is

converging to a Normal distribution.

Figures III.E.6.4, III.E.6.5 and III.E.6.6 are the

corresponding scatter plot analyses for the data in the previous figures

for the larger value of SSN. It appears that YMLE and YLS have a

positive correlation coefficient which becomes more pronounced as the

data becomes less correlated. The distribution of YMLE also appears to

have a smaller variance than Y This effect is more pronounced for

more highly correlated data. Compare, for example, the estimated

standard deviation of I and that of Y from the table in Figure
MLE LS

III.E.6.4 with the corresponding entries in the table from Figure

III.E.6.6.
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F. i-LAPLACE MOVING AVERAGE MODELS

1. Introduction

In this section, we derive a time series model that has an

2-Laplace marginal distribution and the correlation structure of a

th
linear q -order moving average model. This construction uses the

square root Beta-Laplace transform given in Section III.B.3. The first-

order model retains the full range of correlations up to 1/2.

2. The First-Order Moving Average Model

Let [L n(-a)} be an i.i.d. sequence of (Z-a)-Laplace random

variables; {A /2(a, -2a)} be an i .i.d. sequence, independent of
n

(L (i-a)), where A is a Beta (a,Z-2a) random variable and 0 < a < /2.

Both the innovation and the coefficient sequences are independent of

X , X 2 . . . . .  Then the sequence [X (i} given by

i Xn( )  n( _a) A/2(
X (W)= L (-a) A 11 -2a)L (i-a), (III.F.2.I)
n n n n-1

has a marginal i-Laplace distribution and an MA(1) correlation structure

such that 0 < Corr(X n,X n) < 1/2.

To see that X () has an i-Laplace distribution, first note that

by the square root Beta-Laplace transform theorem of Section III.B.3,

1 /2
the distribution of the product A (a, i-2a)L (i-a) is a-Laplace.

n n-i

Then note that X (i) is the sum of two independent random variables, one
n

of which has an (Z-a)-Laplace distribution and the other has an a-

" Laplace distribution. So, if pX(w) is the characteristic function of

X (Z), then

n
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X = (I+-" = (III.F.2.2)

To see that {X n()} has the correct correlation structure, first

note that by the construction of (III.F.2.1), Xn-k is explicitly

independent of X for Iki Z 2. Therefore, Corr(Xn,Xn) is zero for

n n n-k

IkI Z 2.

For k = ±1, we have, after some simplification

Co(rr(X ,Z+) -a)
Corr(Xn 'n-k 1 (III.F.2.3)

2

Finally, note that in the limit as a 0, (III.F.2.3) approaches

zero. Also, as a + Z/2, (III.F.2.3) approaches 1/2.

Relc 1/2(  _1/2
Replace A 1(a,-2c) in (4.1) by -A (c, Z-2cx), we have a full

n n

range (-1/2,0) of nonpositive lag-1 serial correlations.

3. The q-Order Moving Average Model

The MA(q) model for q > 2 is the extension of the MA(1) model

given in (III.F.2.1). Let [Ln(Z-qa)l be an i.i.d. sequence of (Z-qa)-

1 /2
Laplace random variables. Let [An/i Ia,Z-(q+1)t}] for i = 1,...,q be

i.i.d. sequences, independent of each other and of {L (Z-qca)}, where
n

A n, i is a Beta (a, Z-(q+ )a) random variable for all n and all

i = 1,...,q. Also, 0 < a < Z/(q+I). Both the innovation and each of

the coefficient sequences are independent of Xn 1 ,Xn -2 ,. . . .. . Then the

sequence [X ()} given by
n
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q
X (9) = (9-qa)+ ~ 1/2Xn() L (-qa) + A1/ {a,'-(q+1)alLn(X-qa), (III.F.3.1)

has a marginal %-Laplace distribution and an MA(q) correlation structure

for 0 < a < Z/(q+I). When a = 0, then {X (9)} is an i.i.d. sequence;n

when a = 9/(q+l), then the moving average is an equal weighted average

of q+1 i.i.d. a-Laplace error terms L (a).n

To see that X () is an 9-Laplace random variable, first note

from the square root Beta-Laplace transformation theorem o' Section

III.B.3, that each product A 1/2a, ,-(ql)a}L (Z-qa) has an a-Laplace
o ni n-i

distribution.

But the sum of q i.i.d. a-Laplace random variables has a qa-

Laplace distribution. Thus, X () is the sum of two independent randomn

variables and its characteristic function is obtained as the product

Uq

~X(W) 1= W Ji+W-2i=1

"1 -- q 1} :qa = (III.F.3.2)

The correlations are truncated at lags Iki I q+1. By the

construction of (III.F.3.1), Xn is explicitly independent of Xn- k for

IkI  q+1.

Negative correlations are obtainable with 2q choices for

/2 112replacing or not replacing [A/ 2{a,9-(q+l)a}] by [-A .a,2.=(q+1)a}j in. n, i n '

(II.F.3.1)2
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This model can be generalized from the one-parameter case by

replacing qa in (III.F.3.1) with a. in each term in the sum, and

q
replacing L n(2-qa) by L n aZq

i.1i
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IV. RESIDUAL ANALYSIS COMPARISON OF THE NLAR(1)
' AND THE BELAR(1) PROCESSES

A. INTRODUCTION

Lawrance and Lewis [Ref. 22] developed a higher-order residual

analysis for non-linear time series with autoregressive correlation

structures. Specifically, they developed a third-order analysis based

on the cross-correlation of the linear residual, Rn , and its square at

lag k, R2 _ . They applied the analysis to the problem of modelling wind
n-k

speed data. It is important to note that this analysis was done in

conjunction with, and not in place of, the usual second-order analysis.

As has been already pointed out, second-order analysis is sufficient for

modelling only when the processes are both linear and Normal.

The residual analysis involves only joint moments of order three.

In Chapter II of this thesis, it was shown that for the NLAR(p) models

with p = 1,2, all the third-order moments--that is, those of the form

E(X.X.X ) for all i, j, k--are zero. Therefore, the Lawrance and Lewis

residual analysis will not differentiate between the NLAR(p) processes

with the same autocorrelation structure. It can also be shown by

induction on k that Corr(R ,R2  ) = Corr(X 2',R ) = 0 in the BELAR(1)
n n-k n n-k

process. Hence, either third-order residual analysis will be unable to

discriminate the BELAR(1) process from any of the NLAR(1) processes with

the same autocorrelation function.

In the spirit of looking at the lowest possible joint moments for

differentiating between models with symmetric marginal 3, a fourth-order
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analysis is proposed. Two candidates are investigated as the basis of

this analysis. The first one considered is the cross-correlation of X
3

n

and the linear residual at lag k, R The second is the~n-k"

autocorrelation of R2 and R2  The two analyses are compared by their
n n-k

abilities to differentiate among the different types of NLAR(1)

processes and the BELAR(1) process.

Table IV.A.1. contains a summary of the models in the comparison,

along with the selected sets of parameter values and corresponding

correlation coefficient. Even though each of the models has the same

marginal distribution (standard Laplace) and identical autocorrelation

functions, each has a theoretical cross-correlation function in terms of

(X3 R and autocorrelation function for (R2,R2 ) that are different.
n n-k n n-k

The question of how the residual analysis is affected by parameter

estimation is an important issue, but is not addressed at this time.

Before the candidates are developed in the next two sections, it is

convenient now to place both the NLAR(1) and BELAR(1) processes into

their common RCA(1) framework.

Using the terminology of Nicholls and Quinn [Ref. 16], both the

NLAR(1) and the BELAR(1) processes can be written as

Xn cXn-1 + B X n tn, (IV.A.1)n n-i nn-1 n

where [F n } is the i.i.d. innovation, E(En ) = 0, and otherwise defined as
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1. (1-a)-Laplace in the BELAR(1) process;

" 2. standard Laplace, but with a degenerate component at the origin in

the LAR(1) process;

3. scaled Laplace where A - 1-a in the TLAR(1) process;

4. convex mixture of scaled Laplace variables in the general non-

boundary NLAR(1) process.

TABLE IV.A.1

Summary of Models with Laplace Marginals and Autocorrelations 
of Y Ik I

Model Parameter Values Y Comments

1 -- 1; 8I = .19216 .19216 Linear models;

LAR(1) a = 1; al = -.63662 -.63662 one boundary of

a = 1; .I = .89986 .89986 NLAR(1) family.

a1  81 .413836 .19216 General discrete

NLAR(1) a. - .797885; 8 = -aI -.63662 random coefficient

a1  a 81 = .94861 .89986 model.

a = .11; positive model .19216 General continuous

BELAR(1) a = .50; negative model -.63662 random coefficient

a = .884; positive model .89986 model.

a1 = .19216; 81 = 1 .19216 Other boundary

TLAR(1) a1 = .63662; Bi = -1 -.63662 model of NLAR(1).

I .89986; BI - 1 .89986

The {B I process is the i.i.d. random coefficient process,n

independent of e n and {Xk I for k < n-i with E(B n 0 and otherwise

defined as:

222
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12 1/2

1. ±(A (a,1-a)- Y), where Y = E{A (a,1--)} and An(a,l-a) is a

standard Beta random variable in the BELAR(1) process;

2. 0 in the LAR(1) process, since it is a linear, constant

coefficient AR(1) process;

S3 K-a} in the other NLAR(1) processes, where K' is a Bernoulli1 n n

random variable such that P(K - 1 )a 1 and 0 S 1 and a
n

and 81 are not both unity. At aI 1 the process is the TLAR(1)

process.

The c is a constant defined as:

11/2
1. Y E{A (a1-a)} in the BELAR(1) process;n

2. aI8 - 81E(Kn) in all the NLAR(1) processes (a, 1 being the
11 n

LAR(1) process).

The second and fourth moments of E and the second, third and fourthn

moments of B are needed in the following sections. In Table IV.A.2,n

there is a convenient summary of the necessary equations.

Now the linear residual, written in terms from (IV.A.1) has the

following forms analogous to (III.E.4.3) and (III.E.4.4),

R Xn nXn-1 + Eno (IV.A.2)

R = Xn - cX . (IV.A.3)n n n-1"

Using (IV.A.2) and the independence of [B I and {E }, the second andnl n

fourth moments of R are
n

223
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E(R2) - 2E(B2) + E(E 2 ), (IV. A.14)
n n n

E(R4 ) - 211E(B 4 ) + l2E(B2 )E(c2 ) +E( C). (IV.A.5)n n n n n

The variance of R 2 when needed is derived from (IV.A.14) and IV.A.5).
n

B. RESIDUAL ANALYSIS USING Corr(X3 , R n

In this section, the residual analysis using the theoretical cross-

correlations, Corr (X3, Rnk is developed. Using (IV.A.1) and (IV.A.2),
n -

we have

X3 c3X3 _ + 3c2X 2
_ R+3X R 2 + R3, (IV.B.1)

n n-i n 1 n 3 n-1 n n

where c is defined in Section IV.A.

The cross-correlation function of X3 and R at lag k is defined as
n n-k

E(X3 R
C (k) -Corr(X 3 ,R = n n-k (VB231 -n n-k GX3 (R '(V..2

n n-k

where Var (X 3) E(X) 6! and Var(R )is given by (IV.A. 1 4) for all nn n n-k

and all k , since as shown in Section III.E.3, (R }is stationary
n

whenever (X I is.
n

Now from the construction of R nin (IV.A.2), it is explicity clear

*.that X nand R nkare dependent for all k and that the IR nI are not

independent of each other, unless B nis identically zero as in linear
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constant coefficient AR(1) processes. However, by the Residual Theorem

(Lawrance and Lewis [Ref. 221), the {Rn } are uncorrelated.

From (IV.B.1), we have for all k

C (k) = {c'E(X3 _ R ) + 3c2 E(X2 _ R R ) + 3cE(X R2 R
31 n-1 n-k n-1 n n-k n-1 n n-k

+ E(RnRnk)} / [12/5 {E(R2)11 /2]. (IV.B.3)

Consider (IV.B.3) for k < 0. Since the random coefficients [B I
n

are independent of the process {X.} for j n-1, this implies that1 J

C31 (k) is zero for k < 0. For k = 0 in (IV.B.3), we have, after some

simplification,

72c 2 E(B n ) + 6c2E(E2 ) + 72cE(B 3 ) + E(R4 )
n n nC3 1 (0) = . (IV.B.4)

n

For k > 1, there is the following recursive formula,

k
c (1-c 2 )E(E 2 )

C3 1 (k) = C3 1 (K-1){c
3 + 3cE(B 2 ) + E(B 3 )1 + (IV B5)

1k)Kn + (n 2/-5--E(R2)jI / 2  ( B" '

n

It is now a simple matter to consolidate the expressions for C (K)
31

for all k and substitute the appropriate expressions from Table IV.A.2.

For the NLAR(1) models--including LAR(1), for which a= 1, and TLAR(1)

for which 1= ±--we have

226
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0, k < 0;

[2 -a8 + 6a1 B(1-2a I)(1-a1  a'84 (8-1 9a 1 +1 2a2 )
C 31(k) - 1 1 11/ k =0;

31 v'10 (1 128)l1

(IV. B. 6)

ak Bk (a 21- 2)1/2

a a3c (k-i) + 1 ~1(1 1 1
2 (- 1i 1 k Z .

1 131 r

For the BELAR(1 process, we have

0, k < 0;

C (k = (6 - 5y 2 - ay 2 ) k =0; (IV.B.7)

31 k ((1-a)(1 y2'11

2(i+2a)C (k-i) + k a1, ~.
3 31 1

The theoretical cross correlation functions for each of the models

and sets of parameters in Table IV.A.1 are given in Figures IV.B.1 -

IV.B.3. Three points can be made. For the models with IpI small, such

as in Figure IV.B.1, there is little difference between the cross-

correlation f-inctions of all four models. (Of course for p = 0, there

is absolutely no difference, since all NLAR(1) models and the BELAR(1

model collapse into the unique i.i.d. case). A difference between the

cross-correlation function of the boundary NLAR(1) models--LAR(l) and

TLAR(1--does become more apparent as jpj increases. But, there seems
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to be little distinction between the cross-correlation functions of X3

n

and Rn- k from the BELAR(1) process and the non-boundary NLAR(1) process

with a = /TT even when IpI is large as in Figure IV.B.3. This

final point suggests the possibility that there exists a pair of values,

(a1,a81), whose product is p ; 0, for which the BELAR(1) process and the

corresponding NLAR(1) process will not only have identical

autocorrelation functions, but may also have nearly identical cross-

correlations of X 3 and R for some specified number lags
n n-k

k = 0,1,...,j.

The cross-correlations of X3 and R can also be used to
n n-k

distinguish the random coefficient AR(1) processes with a standard

Laplace marginal distribution from the Gaussian AR(1) process where

X - N(0,2) and n - N(0,2(1-a 2fl, where a is the correlationn n

coefficient. We have for the Gaussian AR(1) models,

0 k <-1,

C31 (k) - Corr(Xn,Rn ) = (3/5(1-a2) I / 2  k 0 0, (IV.B.8)

a C 31(0) k a 1.

Note that is C (k) for k > 1 is proportional to Corr(Xn,Xn) = a
31 n n-k

This is consistent with the fact that a Gaussian process is completely

determined by the mean and covariance matrix.

Figures IV.B.4 - IV.B.6 show the theoretical cross-correlation

function of the Gaussian AR(1) model superimposed on the values for the

different models from Figures IV.B.1 - IV.B.3, which have the standard
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Laplace marginal distribution. There is some differentiation between

the Laplace models with AR(1) correlation structure and the given

Gaussian AR(M) model, but not much. It would, however, be very easy to

identify the Gaussian model from the Laplace models using probability

plots. This illustrates the point made at the beginning of this

* -chapter, that a higher-order residual analysis is not intended to

replace the existing methods of analysis. It also emphasizes one of the

very foundations of the thesis, that the marginal distribution is one of

the very first aspects of a time series that should be examined.

C. RESIDUAL ANALYSIS USING Corr(R 2,R2 _n n-k

In this section, the residual analysis using the theoretical

autocorrelations, Corr(R 2 R2 _ ) is developed.
n n-k

Let C2 2 (k) represent Corr(R
2 ,R2k) for all k. Since the correlation

function is an even function and {Rn I is stationary, C2 2 (k) = C2 2 (-k).

We represent only k = 0,1,2,.... Using (IV.A.2), we have after some

simplification for k Z 1,

C (k) = {E(R 2Rn ) - E(R2 )E(R )2 / 2
22 n n-k n n-k OR n R2n n-k

= [E[(B 2X2  + 2BnXnl + e2)R2  -e(Rn)e(R
2 )] / (

n n-i n n-i n +n )Rn -k ERn )Rn-k (aR2 0 R2
n n-k

= [E(B 2 )E(X2 Rn  ) + E(R2 ){E(E 2 ) - E(Rn)} / (aR2nn n-i n -k n-k n n aR nOR n-

= {E(B 2 ) Cov(X 2 OR2 k / (OR2OR 2
n n nk n n-k
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=E(B) Cov(X ),R2  ) Var(R " (IV.C.)
n n n-(k-1) n

Now an immediate advantage to the analysis based on (IV.C.l) as

opposed to that based on Corr(Xn , Rn- k ) is apparent. For the constant

coefficient models, LAR(l), C 2 2 (k) will have a spike at lag-O and be

zero for all other lags, since B = 0. This will not be the case for
n

the other NLAR(1 random coefficient processes or in the BELAR(l)

process. It will not, however, distinguish the LAR(1) process from any

linear AR(1) process. This, however, can be achieved using probability

plots as mentioned previously.

To derive a computational formula from (IV.C.l.) in terms of the

parameters of the process, first let E (k) = E(X2 Rn ). Then,
22 n n-k

substituting in (IV.A.l) and (IV.A.2), we have, after some

simplification for k = 0,

E 2 2 (0) = E(cX + B X + n) 2 (B X + n)2}
22n-1 nn-1 n n n-1 n

= E( ) + 2cE(E 2 ) + I2E(_ )E(B2 ) +24c2E(B2 )n n n n n

+ 48cE(B3 ) + 24E(B 4 ). (IV.C.2)
n n

For k > 1, we have the recursion

E2 (k) = 
{c2  + E(B2)}E (k-1) + E(_ )E(Rn )'n(IV.C.3)

22 n 22 n n-k

Again using the stationarity of {X I and [R}2n, we have the following
n n

expression for the autocorrelation function
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k "0;

C2 2 (k) - E(B2 )
V (n )  [E22(-1) -2E(Rn2)1, k > 1. (IV.C.4)

Var(R2 ) 22 n
n

For the non-LAR(1) cases of the NLAR(1) process, we substitute from

Table IV.A.2 and equations (IV.A.4) and (IV.A.5) to obtain

4{6 - a2 82 (5+12s2-11a B 2)), k - 0;
E2(k) = 1 11
22 la 2 E (k-1) + 4(1-a B) (1-a2B2), k a 1. (IV.C.5)

1 1 221 1 1 1

1 '  k - 0;
C 2 2 ( k ) = I I-) 1a 6 ) }k . . ( V C 6
2 2 k a(1-a)$[2{E2(k-1) - 4(1-a 26 2 )

1 1122 1 1 k a 1. (IV.C.6)
4{5 262 + 24862 - 42ct 2 + 19a 2

1_ 1 1 1 1 1 1

The corresponding results for the BELAR(1) process are

12(2+aY2-3y2), k = 0;
E2K) --1

22 ( ) E2 2 (k-1) + 4(-a))(1-Y2 ), k a 1. (IV.C.7)

1(, k = 0;

22(k) = [E22(k-1) - 4(i-y 2 )}
4 (5-12Y 2+26aY 2-19Y 4 ) k 1. (IV.C.8)

The theoretical autocorrelation functions for each of the models and

sets of parameters in Table IV.A.1 are given in Figures IV.C.1-3. There

appears to be more discrimination between the TLAR(1) model and the

other random coefficient models with Corr(R 2 ,R 2  ) than with
n n-k

Corr(Xn, Rn) even when IpI is small, as seen in comparing Figures
n n-k
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IV.C.1 and IV.B.1. There is still little discrimination between the

BELAR(1) model and the given non-boundary NLAR(1) model. However, the

important point is that since the LAR(1 model is a linear AR(1) model,

-,Corr (R2,R 2 k 0 for all values of p and for all k =±1, ±2 ..

n.n
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V. EXTENSIONS AND OPEN PROBLEMS

A. INTRODUCTION

*During the discussion in the previous chapters, possible extensions

and/or unresolved issues have been mentioned. At this point, we con-

clude by summarizing some of the directions in which this research could

be continued. There are still significant contributions to be made,

particularly in parameter estimation, model development and

applications.

B. ESTIMATION

There are several open questions and extensions in the area of

parameter estimation and inference for this class of stochastic

processes.

First, there is the need to obtain theoretical results substantiat-

ing the empirical results from the simulation of the maximum likelihood

estimator (m.l.e.) of serial !orrelation in the TLAR(1) and the BELAR(1)

processes. Several researchers have written on the subject of maximum

likelihood estimation in dependent sequences. Much of this is assembled

in the books by Basawa and Prakasa Rao [Ref. 42] and by Basawa and Scott

[Ref. 43]. It is not known whether the conditions on the conditional

densities are satisfied in the cases of these random coefficient AR(1)

models to prove that the m.l.e. is consistent, asymptotically efficient

or asymptotically Normal. Conditions for the existence of the m.l.e's
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are generally extremely complicated and difficult to verify unless the

log likelihood is absolutely continuous in the parameter space.

A second problem to resolve is that of existence and uniqueness of

the maximum likelihood estimators of (ai,8 i) in the NLAR(1) process. In

this case, the log likelihood is definitely not differentiable with

respect to the parameter, 81, nor is it clear that there is a unique

maximum. It appears from contour plots of the log-likelihood function

over a grid of values in (a1, 8 1 ) coordinates that there is a unique

local optimum within the region bounded by 0 < a < 1 and -1 < 81 < 1

for large enough samples of X n1. A non-linear optimization technique

that uses only function values and not derivatives seems to be

appropriate, since the log-likelihood function is not differentiable

everywhere with respect to 81.

A third problem involves the Z-Beta-Laplace AR(1) model. Except for

the case when Z is assumed to be one (the BELAR(1) model), the

likelihood function in (a,) has not been derived. This is primarily a

numerical issue since neither the density of X for non-integer values
n

of 2 nor the conditional density of X given X for any values of
n n-1

9 > 0 have closed-form expressions.

A fourth issue in estimation is to extend the maximum likelihood

approach to include the joint estimation of the scale parameter of the

L marginal distribution to that of the shape parameter and the serial

correlation coefficient. There is no reason to assume that the marginal

distribution should always be a standard Laplace or standard 9-Laplace.
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4Finally, there is the issue of quantile estimation in the random

coefficient models. Empirical results are given only for the BELAR(1)

process for the distribution of the sample median. Theoretical results

are related to mixing conditions. Based on a new mixing condition,

which has been shown to be satisfied by linear AR(1) processes

[Ref. 4 4 ], Gastwirth and Rubin derived the asymptotic Normal theory of

quantile estimation for the linear LAR(1) process. The open question is

whether the mixing condition of Gastwirth and Rubin is satisfied by any

of the random coefficient models--NLAR(1) , BELAR( 1) or i-Beta-Laplace

AR(1).

C. MODEL DEVELOPMENT

Advances in modelling can be made in developing scalar models with

p-th order autocorrelation structure, as well as bivariate autoregres-

sive models.

An open question in the development of the NLARMA(p,q) family of

models is the existence of the general class of models with p-th order

autocorrelation structure--NLAR(p) for p 3; specifically, it is to

derive the distribution of the i.i.d. innovation sequence (E ). This is
n

*only known for the TLAR(p) subclass of a proposed NLAR(p) family.

. A similar question is open for p . 2 in the continuous random

coefficient models with an i-Laplace marginal distribution. The actual

structure of the model, as well as the distribution of the innovation is

in question.

There is also a need for multivariate time series in many fields of

physical science. The NEAR(2) framework was used by Dewald and Lewis
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[Ref. 24] to derive a bivariate exponential AR(1) model. Such an

extension is also possible with the NLAR(2) model. Just how one

estimates the eight possible parameters in such a model is an open

question.

Related to the model development and parameter estimation is the

need to identify particular models. Higher order residual analyses have

been based on the linear residual Rn = Xn - a X n- - a2Xn-2 . Since the

NLAR(2) model is only partially time reversible, it is possible that the

reversed residual R = X - a X - a X could be used in model
n n 1 n+1 2 n+1

identification as well. These were introduced by Lawrance and Lewis

[Ref. 6, 45] but their use has not been explored in any context.

There is also the question of the effect that estimating a1 and a 2

from X n } will have on the sample autocorrelation of (R2 ,R2  ) and the
n n n-k

cross-correlation of (X3,R n ) in the fourth-order residual analyses
nn-

proposed in Chapter IV.

D. APPLICATIONS

In Chapter I, several areas have been noted where the modelling is

accomplished with heavy-tailed distributions, notably in voice and

acoustics modelling, as well as in image coding. In these areas, the

Laplace distribution and the symmetric Gamma distributions are widely

used. There is the possibility that the i-Laplace for Z < 1 could also

be a useful alternative to the symmetric Gamma. One advantage of the

Z -Laplace distribution, which is the difference of two i.i.d. Gamma(Z,k)

is the simplicity of the form of the characteristic function.
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-- W% Another field in which the L-Laplace models could be useful is in

the modelling of the directional components of wind speed. Models with

skewed marginal distributions have been fitted to data and then

transformed either to Normals (for example by Brown, Katz and Murphy

[Ref. 46]), or to Exponentials by Lawrance and Lewis [Ref. 6]. In both

of the cited papers, the data indicated that the wind was almost always

blowing. The question is, however, how does one model wind velocity

when there are long calm periods. This is a problem from Australia as

related by T. Lewis in the discussion of the NEAR(2) model [Ref. 6]. As

can be seen in Figure III.C.1, for small values of Z, highly correlated

* periods of calm and wind can be generated using the 2-Beta-Laplace AR(1)

model.

The preceding examples demonstrate the opportunities for continued

research and are not intended to narrow the focus of future endeavors.
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VI. SUMMARY AND CONCLUSIONS

We have indicated by reference to the scientific literature that there

are important application areas, especially in the physical sciences of time

series whose marginal distributions are non-Normal. This feature, itself,

presents new problems in the modelling, study and analysis.

For those areas where the non-Normality manifests itself primarily in

the thickness (heaviness) of the tails of the marginal distributions, we

have demonstrated that within the 2-Laplace family of distributions, there

is an appropriate member with which to model phenomenon with a symmetric

heavy-tailed marginal distribution. The t-Laplace family has very thick

tails when Z is small and a limiting Normal distribution as Z increases.

To account for serial dependence in the time series we have derived two

families of random processes that extends the random coefficient approach to

modelling non-Normal time series. The discrete random coefficient models

(NLARMA(p,q)) have a Laplace marginal distribution and the continuous random

coefficient models (9-Beta-Laplace AR(1) and MA(q)) have an 9-Laplace

marginal distribution. Both families are additive models and imitate the

linear Gaussian models in that they exhibit the usual ARMA(p,q) correlation

structure. The models are parametrically parsimonious, structurally simple

and easy to generate on a computer.

We have also demonstrated that the fourth-order residual analyses based

on the uncorrelated, but dependent sequence {Rn I are appropriate and useful

methods to discriminate between the discrete random coefficient and the

247

-. '



continuous random coefficient models when first, second and third-order

properties are identical.

For the purposes of parameter estimation, we derived the joint

[ probability density function. Numerical routines were written to maximize

the likelihood function to estimate the serial correlation coefficient in

the BELAR(1) and the TLAR(1) processes. Simulation results indicated that

this estimator was more efficient and less biased than the least squares

estimator derived from the linear residual.

Finally, we summarized some of the remaining issues in this field of

non-Normal time series analysis. Extensions of the analyses in this thesis

which need to be pursued are noted, along with possible applications in

those previously mentioned fields of the physical sciences.
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